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集成电路与系统（ICAIS）实验室

l集成电路与系统（ICAIS）实验室成立于2016年5月，已累计发表国际论文约80篇（其
中IEEE 期刊论文约25篇)，获竞争性科研经费超千万元。目前拥有4位美国博士和40
余位研究生的科研团队。

l团队成员在过去3年内在深度学习的硬件实现方面，在IEEE 相关期刊上已经发表论文 
10 余篇, (同期成果) 在国际同行中处于前列

l承担了军委科技委创新特区、国家自然科学基金委等资助的关于深度学习VLSI实现
方面的国家级项目。 与大企业在通信系统与深度学习等方面有广泛的科研合作

l过去两年内共有四篇论文进入IEEE 行业旗舰会议最佳论文奖的终选名单，已经获最
佳论文奖一次。实验室学生团队获得了2018年全国大学生集成电路创新创业大赛总
决赛的一等奖两项

l 2018年在IEEE Trans. on Circuits and Systems-I （TCAS-I）上发表的关于CNN架构设
计的论文自发表以来已经连续11个月位居该期刊按月下载排行榜 前五名。

l IEEE TCAS-II 2019年第三期同期发表了ICAIS 实验室的三篇论文
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l 实验室主任 : 王中风博士
u 文革后以中专学历考进清华大学的第一人, 本科提前毕业，在自动化系相继获得学士和硕

士学位。2000年获美国明尼苏达大学电机系博士学位
u 国家“千人计划”专家，IEEE Fellow，南京大学特聘教授、博导，微电子学院副院长
u 国际知名的低功耗超大规模集成电路设计专家
u 拥有二十余年数字信号处理与IC设计领域丰富的研发经验，在学术界和工业界都有广泛

的国际影响，在通信系统的VLSI实现方面有许多技术性突破， 是纠错码设计与 IC实现领
域里的国际著名专家

u 曾在美国Oregon State University 任教和在多家半导体公司从事通信系统的设计工作， 
包括著名的国家半导体公司（现德州仪器）和博通公司。曾任博通公司技术副总监。先后
参与十余款商用芯片的设计

u 在高速网络通信方面掌握行业的许多关键技术并发明了多种先进的信道编码方法，其设计
的FEC方案已经被 IEEE等十五种以上网络通信国际标准所采纳

u 在国际会议和期刊上发表200余篇技术论文，拥有60多项美国和中国的专利与发明，编
著“VLSI“专辑一部，先后三次获IEEE行业学会颁发的最佳论文奖，先后八次担任IEEE
四种会刊的编委或客座编辑

集成电路与系统（ICAIS）实验室



核心团

实验室教师成员
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l 林军博士
u 副教授
u 美国
    Lehigh
    大学博士
u 在IEEE TVLSI、IEEE TCAS-I/II

等顶级杂志和会议上发表 80余
篇论文， Google学术引用700
余次。获IEEE ISVLSI年会最佳论
文奖一次

u 近年来主要从事新一代人工智能
芯片架构、5G智能基带算法与实
现及安全芯片设计等方面的研究

l 杜力博士
u 副教授
u 美国UCLA 
    电机系博士
u 在IEEE芯片设计类的期刊和

会议（包括ISSCC，TCAS-
I,TCAD，和JSSC等）上发
表论文20余篇

u 具有8年的电路领域工业设
计经验，申报美国专利12项

u 主要从事模数混合，高速光
通信和数字电路设计的研究

l 马宇飞博士
u副研究员
u美国ASU 
   电机系博士
u主要从事深度
   学习系统硬件
   加速以及AI系 统的设计自动化
    方面的研究
u曾在飞步科技美国公司负责开

发针对无人驾驶的SoC智能感
知处理器核心模块设计

u在IEEE 电路设计领域主流期刊
和会议上发表高质量论文10余
篇，已被引用500多次
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Introduction

•More advanced/complicated algorithms are being introduced to improve the system 
performance, e.g., DNN, LDPC, MIMO, etc, which usually leads to larger power 
consumption in a real system

•Real applications are usually speed hungry, e.g., Ethernet speed increases by 
approximately 10 times every 8 years.  Increased data rate directly leads to increased 
power consumption

•With the popularity of portable computing devices and the increasing need to reduce 
packaging cost and size, low power dissipation is highly desired

•VLSI optimizations on power or speed are generally performed at multiple levels

•VLSI Signal Processing plays a major role at algorithm level, architecture level and 
even circuit level optimizations.
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The Way of VLSI for Signal Processing
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State-of-the-art

8



High Speed/Low Power Design Methods

lGeneric Design Techniques 
u Power Island, 
u Clock Gating,
u Transistor Resizing,
u Operating in subthreshold regime,
u MTCMOS, VTCMOS, Dual-Vdd, etc,
u Sleep Transistor (cluster based, DSTN, etc), 
u Forward/Reverse Body Biasing (FBB/RBB),

lApplication Specific Techniques 
u Pipelining/parallel processing/retiming w/ reduced Vdd, 
u Numerical/algorithmic strength reduction (e.g., FFT/DCT),
u Joint algorithmic and architectural level optimization,
u Adaptive computing, etc.
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Hi-Speed MAP Decoder Architectures

lMax-a-posterior (MAP) algorithm: optimal for turbo decoding
lRecursive computations form the bottleneck in hi-speed design
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Recursive State Metrics Computation 

l Recursive computation 
forms the high speed 
bottleneck

l The delay of computing the 
absolute value can be saved 
by introducing an extra 
subtraction unit.          
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An Efficient ACSU: Arch C

lAvoid the computation of absolute value with GLUT, retime 
the final addition operation to reduce the loop  latency.
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Advanced Radix-2: Arch-D
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lThe throughput can be increased further if performing two 
iterations in one cycle.

Improved Radix-4: Arch-F
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Max Clock Freq. (Mhz) Relative Area Relative 
Processing  Speed

Arch-A 241 1.0 1.0

Arch-C 333 0.87 1.38

Arch-R 335 1.14 1.39

Arch-E 182 1.82 1.51

Arch-D 370 1.03 1.54

Arch-F 241 1.99 2.0

Performance Comparisons
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100Gbps+ Product Code Decoder Design 

>1.45dB0.62dB

l Product codes can achieve near-limit 
performance with iterative decoding, 
which would cause memory access 
conflicts in parallel processing and 
decrease the throughput linearly. 
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Implementation Results of Super-FEC

l  Decoder (FPGA)
uOverall utilization: 62%
uMax clock frequency: 196 Mhz
uMax number of iterations: 40Gb/s at 15  iterations

l  Encoder (FPGA)
uOverall utilization: 6%
uMax freq.: 238 Mhz
uMax rate: > 40Gb/s

l  ASIC 
uUnder  40nm CMOS, can

         achieve over 100Gbps
         throughput
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l Deep Learning Has Achieved Breakthrough in Various Applications

19

Applications of Deep Learning

19

Medicine Fintech…… 

Self-driving CarsSpeech



l Fundamental for Deep Learning 

20

Deep Neural Networks

20 …… 

http://www.asimovinstitute.org/neural-network-zoo/



l When we talk about energy efficiency……

l Efficient DNN processors are desired
21

Deep Learning Inference Platform

CPU GPU FPGA ASIC

Our focus



Academic Research in AI Processors
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lChallenges of Deep Neural Network Processors
uHigh-dimension design space

p Tons of variables, even for basic designs
uComplex parameter interactions

p DNNs are notoriously difficult to tune
uHigh memory storage requirement

p DNNs are over parameterized
uUltra-High computation requirements

p Hundred millions of MACs per image
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lDataflow Optimizations
q Input/Output/Row Stationary Dataflow
q Reconfigurable Data Reuse Pattern 
q Reconfigurable Layer Tiling

lDedicated ISA for AI Processors
qExample: Cambricon(寒武纪)

Ø 9.86x higher code density than x86
Ø Only 4.5% slower than hard-wired DNN accelerator

lDesign with Emerging Memory Devices
q8T-6T hybrid SRAM(P  , S  )
qRRAM-based accelerator
q3D Memory (BW  )
qExtremely low power
qCompute in memory

Academic Research in AI Processors
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lOptimization Schemes
uComputation optimization：

pReduce 3D Conv to 1D Conv, optimize 1D Conv through fast 

convolution algorithms, then restore 1D Conv to 3D Conv

pFast FIR algorithm for convolution

uStorage optimization：

pInter-layer partial storage and intra-layer ping-pong reuse 

uBandwidth optimization：

pResource partition and pipeline process

25

Optimization for CNNs



lConvolutions are basic and complex computations in CNNs
lWe have derived N-parallel Fast FIR Algorithms (FFA) for 1D convolutions, e.g., 3-

parallel and 5-parallel FFAs
lFast Convolution Units (FCUs) for efficient hardware implementation of CNN
l3-Parallel Fast FIR and 3-Parallel FCU

u3-parallel FIR with algorithm strength reduction

uSave 33% multiplications 
 compared to regular convolutions
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Efficient Hardware Architectures for DCNN
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Efficient Hardware Architectures for DCNN

lFast FIR Algorithm 
u5-parallel Fast FIR Algorithm is derived for the first time
uSave 40% multiplications

27



Efficient Hardware Architectures for DCNN

lFast FIR Algorithm 
uReconfigurable Fast Convolution Unit (FCU)
uOperate as two 3-parallel FCUs or one 5-parallel FCU

28



Efficient Hardware Architectures for DCNN

lFast FIR Algorithm 
uComparison between regular convolutions and FCUs
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Efficient Hardware Architectures for DCNN

lMemory Efficient Storage and Computation 
Flow 
uInter-layer partial storage

p Each layer is tiled by factor Tr
p The tiled intermediate data of each layer are stored in 

a specific BRAM
p 14x  reduction on storage requirement compared to 

layer-wise scheme
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Efficient Hardware Architectures for DCNN

lMemory Efficient Storage and Computation Flow 
uIntra-layer ping-pong reuse

p Each specific BRAM is split as 
a dual buffer

p The two segments in a 
specific BRAM are reused in a 
ping-pong manner
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Efficient Hardware Architectures for DCNN

lMemory Efficient Storage and Computation Flow 
uStorage compression

p Intelligently reuse idle-state BRAM
p Save further 20% on-chip memory 

active row data of layer i, i+1

storage
compression

( )i
ar
( )i
ir inactive row data of layer i

( +1)i
ar
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Efficient Hardware Architectures for DCNN

lMicro Architecture
uPU is a 2D FCU array
uCP mainly consists of PUs 

along with some other 
computation units

uThe overall architecture 
is composed of CPs and 
memory footprints

PU CP

Overall Architecture
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Efficient Hardware Architectures for DCNN

l Results and Comparison
u Implementation results 
     of VGG16 on two FPGA 
     platforms
u Comparison with previous works

34



FPAP: Energy-Quality Scalable CNNs

l Problems to Solve: I
uDifferent data precisions requirements in various layers/models

pRange from 1b to 16b for weights/activations
pTraditional architectures: unified computational components of 

long data width
pNot efficient when precisions vary

* Wang, Y., Lin, J., & Wang, Z. (2018, July). FPAP: A Folded Architecture for Efficient Computing of Convolutional Neural Networks. In 
2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (pp. 503-508). IEEE.
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FPAP: Energy-Quality Scalable CNNs

l Problems to Solve: II
uCNNs can have sparse representations

pBoth weights and activations
p Irregular sparsity brings significant load-imbalance 

issue in hardware

uA flexible but efficient architecture is required
pEliminates all computational redundancies

Ø Adapt to different data precisions
Ø Exploit both weight sparsity and activation sparsity

pEnables energy-quality scaling through dynamic 
precision adjustment

* Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M., & Wang, Y. (2018). A systematic DNN weight pruning framework 
using alternating direction method of multipliers. arXiv preprint arXiv:1804.03294.

Layer in AlexNet Weights after Pruning

Conv1 81%

Conv2 20%

Conv3 19%

Conv4 20%

Conv5 20%

36



FPAP: Energy-Quality Scalable CNNs

lFold Computations in CNNs
uPrecision-Adjustable Multiply-Add (PAMAC)

pMAC operation can be decomposed into multiple shift-and-add ops: 

pThe decomposed input can be either weight (WD) or activation (AD)
pFold this MAC into a single adder and sum those terms over multiple cycles
pCan adapt to different data precisions n, only accumulate necessary terms
pThroughput/energy scale with data precision
pSmaller area and shorter critical path
pSide effect: lower speed



FPAP: Energy-Quality Scalable CNNs

lFold Computations in CNNs(cont’d)
uReduce computation of PAMAC

pBit-pair Encoding (BPE) algorithm reduce adds by half

pPossibly 25% of the add ops are still redundant
Ø Vi may be zero
ØOnly sum ``essential add terms”!

BPEBi Vi BPEBi Vi

3’b000 0 3’b001 1

3’b100 -2 3’b101 -1

3’b010 1 3’b011 2

3’b110 -1 3’b111 -0

*  Wang, Y., Lin, J., & Wang, Z. (2018). FPAP: A Folded Architecture for Energy-Quality Scalable Convolutional Neural Networks. IEEE 
Transactions on Circuits and Systems I: Regular Papers, (99), 1-14.



FPAP: Energy-Quality Scalable CNNs

lFold Computations in CNNs(cont’d)
uReduce computation of PAMAC

pFine-grained Weight-Decomposition (WD) and 
Activation-Decomposition (AD) decision
ØWD needs less adds in some layers while AD is 

better in others
ØFurther: Per-MAC granularity
ØEnsure least number of adds

pDynamic approximate computing
Ø Enable tradeoff between accuracy & throughput
Ø Kind of “dynamic quantization” of CNNs

VGG-16 39



FPAP: Energy-Quality Scalable CNNs

lFold Computations in CNNs(cont’d)
uExploit sparsity of weights/activations to reduce number of MAC Ops
uApproach to exploit weight sparsity

ØFold transposed-FIR filter into one MAC
ØDynamically skip zero-coefficient taps

40



FPAP: Energy-Quality Scalable CNNs

lFold Computations in CNNs(cont’d)
uApproach to exploit activation sparsity

pOnly shifting of delay elements is required when meeting zero input
ØNo extra cycle compared to non-folded FIR filter
Ø The number of cycles can be less than non-folded FIR filter when meeting more 

continuous zero activations
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FPAP: Energy-Quality Scalable CNNs

lFold Computations in CNNs(cont’d)
uVLSI implementation of folded FIR filter (FoFIR) 

pAt least 60% of area saving for FIR filters with over 3 taps
pDynamic mapping from DRegs to delay elements

Ø Eliminate unnecessary register-shifting operation/power for zero input with 
slight overhead

42



FPAP: Energy-Quality Scalable CNNs

lMitigate the Load-Imbalance Issue
uTop architecture: a scalable processing element (PE) 

array
pEach column of the array work for one out channel
pThe input features are broadcast along each row of 

the PE array
pInput channels are tiled into multiple groups (e.g., 

16 channels as one group)
pEach PE contains a folded FIR and convolves every 

input feature group in a row-by-row channel-by-
channel way 

pArray synchronize when all PEs finish processing of 
an input channel group
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FPAP: Energy-Quality Scalable CNNs

lMitigate the Load-Imbalance Issue
uDifferent PEs take different cycles for different output channels
uSolution: Find a good process order of output channels for each input channel group

pFormulize an estimation of cycles (cost) 
Ø According to dataflow mapping and essential add terms in weights

pUse genetic algorithm to minimize the cost
ØObtain fairly balanced PEs under certain output channel order
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FPAP: Energy-Quality Scalable CNNs

lExperimental Results
uFolded architecture achieves low power and 

small area (<30mW/2.13mm2 under 28nm)
uThe throughput/energy efficiency scales up as 

data precision or computational precision 
decreases

uThe equivalent throughput of FPAP is much 
higher than its peak throughput because all 
redundancies are eliminated

Characteristics Results

Array Size/#MAC 8x32/256

Technology TSMC 28nm

Area 2.13mm2

Max. Frequency 1GHz

Peak Throughput 32GOP/s(16b)-256GOP/s(2b)

Power <30mW

Benchmark VGG-16

Equivalent Throughput 108.86GOP/s-349.6GOP/s

Energy Efficiency 7.68TOP/s/W-23.63TOP/s/W
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lBackground
uThe remarkable accuracy of DNNs comes at the expense of huge 

computational cost.
uA novel soft-guided adaptively-dropped neural network is 

proposed to reduce the input-specific redundant computations.

lOverview of the Adaptive Dropping Mechanism:

Soft-Guided Adaptively-Dropped NNs

46



lNetwork Structure Description

uContains normal ResNet, BMNet, and SGNet 
uBMNet - binary mask network

Ø Decide which blocks of ResNet should be used for a specific input
Ø Introduce less than 1% computation overhead

uSGNet – soft guideline network
Ø Guide the BMNet to learn the adaptive dropping behavior during the 

training phase
Ø Can be removed during the inference phase

Soft-Guided Adaptively-Dropped NNs
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l Experimental Results
uReduced 76.6% FLOPs with ~0.8% accuracy loss on CIFAR-10

uSGAD outperforms prior works on CIFAR-10/CIFAR100
u1.5-3.0X speedup on CPU during inference

48

Soft-Guided Adaptively-Dropped NNs
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Efficient Hardware Architecture for LSTM

lLong-Short Term Memory (LSTM) Model
u LSTM is a powerful modeling method for sequential tasks
u Widely used in speech recognition/translation/video analysis etc.
u LSTM inference is computation intensive and requires lots of DRAM access
u Require dedicated hardware architectures for embedded applications 
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lHardware-Oriented Compression for LSTM

lEfficient Architecture Design for LSTM

50

Efficient Hardware Architecture for LSTM



Hardware-Oriented Compression for LSTM

51
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l Reduce Memory Footprint with Hardware-Efficient Schemes
u Clipped gating: enable sparse activations

Ø Clipped sigmoid function in output gate for zero activations

Ø Extra regularizer on loss function to control the expected activation sparsity

Hardware-Oriented Compression for LSTM
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l Reduce Memory Footprint with Hardware-Efficient Schemes
u (Multiply-free) Log-domain quantization for weight matrices

u Linear quantization for activations

Hardware-Oriented Compression for LSTM

A Simple Case Study 

E. H. Lee et al., "LogNet: Energy-efficient neural networks using logarithmic 
computation," 2017 ICASSP

53



l Experimental Results: (16,2) pruning + 4-bit non-zero wei&idx
u Language Modeling on Penn Treebank (PTB) Corpus 

u Phoneme speech recognition on TIMIT Dataset

Hardware-Oriented Compression for LSTM
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l Hardware-Oriented Compression for LSTM

l Efficient Architecture Design for LSTM

E-LSTM：An Efficient Hw Arch for LSTM
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l Rearrangement of the Computation Process
u Decouple recurrent/non-recurrent part 
      explore weight reuse
u Same computation pattern 
      hardware reuse

Efficient Hardware Architecture 
for LSTM
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l Rearrangement of the Computation Process
u Alleviate DDR transfer burden

Original process

Our process

Efficient Hardware Architecture 
for LSTM
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l Overall Architecture for Batch Processing

u The bandwidth requirement can be reduced by T times due to the increased time budget for 
memory fetching in the rearranged computation process.

Efficient Hardware Architecture 
for LSTM
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Efficient Hardware Architecture for LSTM

lEfficient LSTM Hardware Architecture
u Efficient model compression algorithm => 32X compression ration
u Compared to ESE (深鉴科技)

p62X reduced DSP slices
p546X reduced LUTRAM
p2X reduced BRAM
p5X energy efficiency 
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lVLSI optimization for signal processing systems can bring 
drastic improvement on power or speed in modern IC design
lDNNs are fundamental for deep learning
lEfficient implementation of DNNs is highly desired for practical 

applications
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Conclusions
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