
Xilinx UltraScale and UltraScale+
架构介绍及设计方法学

1
- 1

张剑森 Kenson.Zhang

依元素科技培训经理

l Introduction to the UltraScale Architecture

l UltraFast Design Methodology

l HDL Coding Techniques

Kintex and Virtex UltraScale Device Portfolio
1
- 3

>> Introduction to the UltraScale Architecture - 1-3 © Copyright 2019 Xilinx 117943

Kintex and Virtex UltraScale FPGA 20nm Capabilities
1
- 4

>> Introduction to the UltraScale Architecture - 1-4 © Copyright 2019 Xilinx 117943

˃ Side-by-side layout comparison (typical layout)

UltraScale Architecture Layout
1
- 5

>> Introduction to the UltraScale Architecture - 1-5 © Copyright 2019 Xilinx 117943

118063**slide

˃ Routing delay dominates overall delay

˃ Clock skew consumes more timing margin

˃ Sub-optimal CLB packing reduces performance and
utilization

Silicon Architecture Address Interconnect Bottleneck for
Next-Generation Designs

1
- 6

>> Introduction to the UltraScale Architecture - 1-6 © Copyright 2019 Xilinx 117943

Next-Generation Routing for Utilization, Performance, and
Run Time

1
- 7

>> Introduction to the UltraScale Architecture - 1-7 © Copyright 2019 Xilinx 117943

ASIC-like Clocking Maximizes Performance Margin and
Reduces Dynamic Power

1
- 8

>> Introduction to the UltraScale Architecture - 1-8 © Copyright 2019 Xilinx 117943

˃ 32 centrally located global clock buffers

˃ Root always in center of device

˃ Skew accumulates from center to edge

˃ 192 – 720 distributed global buffers

˃ Root can be in any clock region

˃ Balanced skew per clock network

Benefits of UltraScale FPGA Clock Architecture
1
- 9

>> Introduction to the UltraScale Architecture - 1-9 © Copyright 2019 Xilinx 117943

CLB Enables Tighter Packing
1
- 1
0

>> Introduction to the UltraScale Architecture - 1-10 © Copyright 2019 Xilinx 117943

Enhanced DSP Sub-Systems for Performance and
Efficiency

1
- 1
1

>> Introduction to the UltraScale Architecture - 1-11 © Copyright 2019 Xilinx 117943

Optimized Block RAM Alleviate Bottlenecks for Many
Applications

1
- 1
2

>> Introduction to the UltraScale Architecture - 1-12 © Copyright 2019 Xilinx 117943

Delivering Massive I/O Serial Bandwidth
1
- 1
3

>> Introduction to the UltraScale Architecture - 1-13 © Copyright 2019 Xilinx 117943

Integrated 100G Ethernet MAC, 150G Interlaken
1
- 1
4

>> Introduction to the UltraScale Architecture - 1-14 © Copyright 2019 Xilinx 117943

Enabling Massive External Memory Bandwidth
1
- 1
5

>> Introduction to the UltraScale Architecture - 1-15 © Copyright 2019 Xilinx 117943

Enhanced PCI Express Gen3 Integrated Core
1
- 1
6

>> Introduction to the UltraScale Architecture - 1-16 © Copyright 2019 Xilinx 117943

˃ The CLB architecture, routing architecture, and the Vivado Design Suite are designed to eliminate
routing congestion

˃ UltraScale devices have an ASIC-like clocking architecture that provides flexibility and
performance for clock distribution

˃ Logic enhancements reduce timing problems and design bottlenecks

˃ I/O and transceiver bandwidth improvements are significant new features in the UltraScale
architecture

Summary
1
- 1
7

>> Introduction to the UltraScale Architecture - 1-17 © Copyright 2019 Xilinx 117943

117970**slide

l Introduction to the UltraScale Architecture

l UltraFast Design Methodology

l HDL Coding Techniques

After completing this module, you will be able to:
˃ Describe the RTL coding guidelines

˃ Use control sets effectively in your design

˃ Create an IP subsystem using IP integrator

˃ Explain the Timing Reports generated by the Vivado® Design Suite

˃ Apply Timing Exceptions to your design if necessary

Objectives
1
- 2

>> UltraFast Design Methodology: Design Creation -
1-19

© Copyright 2019 Xilinx 119988

119989**slide

˃ Add I/O components near the top level

˃ Insert clocking elements near the top level

˃ Register data paths at logical boundaries

˃ Address floorplanning considerations

˃ Optimize hierarchy for functional and timing debug

˃ Apply attributes at the module level

˃ Optimize hierarchy for advanced design techniques

Defining a Good Design Hierarchy
1
- 3

>> UltraFast Design Methodology: Design Creation -
1-20

© Copyright 2019 Xilinx 119988

137051**slide

˃ Use Vivado Design Suite HDL templates

˃ Control signals and control sets

˃ Resets

˃ Know what you infer

˃ Coding styles to improve performance

˃ Coding styles to improve power

˃ Running RTL DRCs

RTL Coding Guidelines
1
- 4

>> UltraFast Design Methodology: Design Creation -
1-21

© Copyright 2019 Xilinx 119988

137050**slide

˃ Follow recommended Vivado language templates for RAM and DSP inference

˃ Use as many of the dedicated resources as possible (SRLs, DSP slices, block RAMs)

˃ Pipeline your design to reduce levels of logic

˃ Avoid reset
– Resets can tax routing resources and are not always needed because Xilinx FPGAs always boot in a

known state

˃ Synchronous resets are preferred
– Allow packing of registers into dedicated RAM and DSP blocks

˃ Dedicated shifters (SRLs); do not use resets

˃ RAM memory bits; do not use resets

HDL Coding Style Impact
1
- 5

>> UltraFast Design Methodology: Design Creation -
1-22

© Copyright 2019 Xilinx 119988

˃ A control set is the grouping of control signals (set/reset, clock enable and clock) that drives any
given SRL, LUTRAM, or register

˃ Designs with several unique control sets may have many wasted resources as well as fewer
options for placement, resulting in higher power and lower performance

˃ Designs with fewer control sets have more options and flexibility in terms of placement, generally
resulting in improved results

˃ In 7 series devices, slices all share common control signals and thus only registers with a
common control set may be packed into the same slice

˃ In UltraScale™ devices, there is more flexibility in control set mapping within a CLB
– Resets that are undriven do not form part of the control set as the tie off is generated locally within the

slice

Control Signals and Control Sets
1
- 6

>> UltraFast Design Methodology: Design Creation -
1-23

© Copyright 2019 Xilinx 119988

137055**slide

˃ Increase performance with the right reset choice
– No reset at all (if possible) is best
– Synchronous rather than asynchronous reset
– Active HIGH rather than active low reset
– Default register value can be controlled via the INIT property

˃ Asynchronous reset interferes with DSP / RAM inference

Using Resets
1
- 7

>> UltraFast Design Methodology: Design Creation -
1-24

© Copyright 2019 Xilinx 119988

˃ Remove resets where possible
– Use INIT for initialization and only use explicit resets where needed

˃ Use synchronous set/reset instead of asynchronous preset/clear when possible
– Synchronous resets can be more efficient

˃ When global resets are required, consider clock gating with BUFGCE to minimize timing impact of
global resets

– Allows more freedom to the placer and router

Resets Recommendations
1
- 8

>> UltraFast Design Methodology: Design Creation -
1-25

© Copyright 2019 Xilinx 119988

137056**slide

˃ Check whether a global reset is really needed

˃ Avoid asynchronous control signals

˃ Keep clock, enable, and reset polarities consistent

˃ Do not code a set and reset into the same register element

˃ If an asynchronous reset is absolutely needed, remember to synchronize its deassertion

Tips for Control Signals
1
- 9

>> UltraFast Design Methodology: Design Creation -
1-26

© Copyright 2019 Xilinx 119988

137060**slide

˃ Anticipate hardware resources mapping when coding

˃ Monitor actual result in elaborated design

˃ RAM
– Check for multi-fanout on the output of read data registers
– Check for reset signals on the address/read data registers
– Check for feedback structures in registers

 Take retiming into account!

˃ Optimal DSP and arithmetic inference
– Fully pipeline code for DSP48
– Avoid set or asynchronous reset around DSP48 (only synchronous reset)
– Use signed values for most efficient, full-bit mapping
– Beware of bus sizing

 Can prevent synthesis from using the block fully while being logically correct
 Account for bit growth for pre-adder / M to P path

– Use pipelined (adder) chain instead of (adder) tree

Know What You Infer
1
- 1
0

>> UltraFast Design Methodology: Design Creation -
1-27

© Copyright 2019 Xilinx 119988

˃ High fanouts in critical paths
– Reduce loads to the portions of the design that do not require it
– Use register replication

 Increases the speed of critical paths by making copies of registers to reduce the fanout of a given signal

˃ Pipelining
– Restructure the long datapaths with several levels of logic and distribute them over multiple clock cycles
– Allows for a faster clock cycle and increased data throughput at the expense of latency and pipeline

overhead logic management
– Consider pipelining up front
– Balance latency
– Avoid unnecessary pipelining

Improving Performance
1
- 1
1

>> UltraFast Design Methodology: Design Creation -
1-28

© Copyright 2019 Xilinx 119988

137057**slide

˃ Gate clock or data paths
– Common technique to prevent switching/glitches from propagation
– The Vivado Design Suite gates logic for power, but some dependencies the tool does not know

˃ Maximize gating elements
– Gate entire clock domain

˃ Use clock enable pins of dedicated clock buffers
– Avoid LUTs or other methods to gate clock-signals

˃ Keep an eye on control sets
– Avoid fine-grained clock gating

˃ Use case block when priority encoder not needed
– Avoid large if-then-else constructs

Improving Power
1
- 1
2

>> UltraFast Design Methodology: Design Creation -
1-29

© Copyright 2019 Xilinx 119988

137058**slide

˃ 32k x 32-bit RAM with cascade_height
– Variations using cascade_height (all 32 BRAMs)

Performance/Power Trade-off for Block RAMs
1
- 1
3

>> UltraFast Design Methodology: Design Creation -
1-30

© Copyright 2019 Xilinx 119988

˃ Use the Vivado Report Power to estimate the power through all stages of a design
– The accuracy of the power estimates varies depending on the design stage when the power is estimated

˃ Use Report Power in either of the two supported modes to estimate power depending on accuracy required
– Vector-based power estimation is a more accurate estimate than vector-less mode

˃ Use accurate clock constraints and I/O constraints in your design to obtain accurate power analysis

Best Practices for Power Analysis
1
- 1
4

>> UltraFast Design Methodology: Design Creation -
1-31

© Copyright 2019 Xilinx 119988

˃ The Vivado Design Suite contains a set of methodology-related DRCs you can run using the
report_methodology Tcl command

˃ This command has rules for each of the following design stages
– Before synthesis in the elaborated RTL design to validate RTL constructs
– After synthesis to validate the netlist and constraints
– After implementation to validate constraints and timing-related concerns

˃ For maximum effect, run the methodology DRCs at each design stage and address any issues
prior to moving to the next stage

Using the UltraFast Design Methodology DRCs
1
- 1
5

>> UltraFast Design Methodology: Design Creation -
1-32

© Copyright 2019 Xilinx 119988

137065**slide

˃ The UltraFast Design Methodology report is automatically generated whenever a design that has
violations is opened after synthesis or implementation

Automated UltraFast Design Methodology Report
1
- 1
6

>> UltraFast Design Methodology: Design Creation -
1-33

© Copyright 2019 Xilinx 119988

˃ Pre-validated intellectual property (IP) cores significantly reduce design and validation efforts, and ensure a
large advantage in time-to-market

˃ Xilinx uses the industry standard IP-XACT format for delivery of IP, and provides tools (IP Packager) to
package custom IP

˃ The Vivado IP packager enables you to create custom IP for delivery in the Vivado IP catalog

˃ Before packaging your IP HDL, ensure its correctness by simulating and synthesizing to validate the design

˃ Ensure that the desired list of supported device families is defined properly while creating the custom IP
definition

– This is especially important if you want your IP to be used with multiple device families

˃ The IP catalog is a single location for Xilinx-supplied IP
– All Xilinx and third-party vendor IPs are categorized based on applications here

Working with IP: Packaging Custom IP
1
- 1
7

>> UltraFast Design Methodology: Design Creation -
1-34

© Copyright 2019 Xilinx 119988

˃ IP integrator is the interface for connecting IP cores to create domain specific subsystems and
designs

˃ IP subsystems are best configured using the IP integrator feature of the Vivado IDE
– Interactive block design capabilities of the IP integrator make the job of configuring and assembling

groups of IP easy

Creating IP Subsystems with IP Integrator
1
- 1
8

>> UltraFast Design Methodology: Design Creation -
1-35

© Copyright 2019 Xilinx 119988

˃ Manage sources in the Vivado Design Suite® with the revision control system
– HDL, IP XCI, IP BD, XDC, Tcl scripts, etc.
– Manage different source types in separate remote directories

˃ Two main revision control strategies
– Maximum flexibility

 Shorter runtime to rebuild the project
– Minimum number of files

 Least number of files to manage at the expense of flexibility

˃ Xilinx recommends following the maximum flexibility strategy
– A large number of files in revision control maximizes flexibility

Revision Control
1
- 1
9

>> UltraFast Design Methodology: Design Creation -
1-36

© Copyright 2019 Xilinx 119988

129180**slide

˃ Create and validate clocks
– check_timing: for missing clocks and I/O constraints
– report_clocks: check frequency and phase
– report_clock_networks: possible clock root

˃ Validate clock groups
– report_clock_interaction

˃ Validate I/O delays
– report_timing –from [input_port] –setup/-hold

– report_timing –to [output_port] –setup/-hold

˃ Add exceptions if necessary
– Validate using report_timing

Using Timing Reports
1
- 2
0

>> UltraFast Design Methodology: Design Creation -
1-37

© Copyright 2019 Xilinx 119988

˃ Timing Summary report provides high-level information on the timing characteristics of the design

˃ Use the Timing Summary report for sign-off post-implementation

˃ Use the Check Timing report to identify any missing timing constraints in the design

Understanding the Timing Reports
1
- 2
1

>> UltraFast Design Methodology: Design Creation -
1-38

© Copyright 2019 Xilinx 119988

˃ Design constraints define the requirements that must be met by the design in order for the design
to be functional in hardware

˃ Synthesis and implementation constraints

˃ Timing constraints
– Process of defining good timing constraints is broken into the four steps

 Defining clock constraints
 Constraining input and output ports
 Defining clock groups and CDC constraints
 Specifying timing exceptions

Working with Constraints
1
- 2
2

>> UltraFast Design Methodology: Design Creation -
1-39

© Copyright 2019 Xilinx 119988

˃ Goals
– Avoid higher implementation run times
– Adjust unrealistic timing requirements to help timing closure

˃ Start with fewer or no exceptions
– Meeting timing with fewer exceptions is OK
– Use clock group exceptions rather than point-to-point exceptions
– Avoid complex expressions with filters
– Avoid exceptions affecting too many paths

˃ Avoid these constraint types
– set_false path –through...

– set_max_delay –from [all_fanout –from ck1] –to [all_fanout -from ck2]

Timing Exceptions: Less is More!
1
- 2
3

>> UltraFast Design Methodology: Design Creation -
1-40

© Copyright 2019 Xilinx 119988

112321**slide

˃ Use the given RTL coding guidelines
– Use Vivado Design Suite HDL templates
– Control signals and control sets
– Resets
– Know what you infer
– Coding styles to improve performance
– Coding styles to improve power
– Running RTL DRCs

˃ The Vivado IP packager enables you to create custom IP for delivery in the Vivado IP catalog

˃ Timing reports help you determine why your design fails to meet its constraints

Summary
1
- 2
4

>> UltraFast Design Methodology: Design Creation -
1-41

© Copyright 2019 Xilinx 119988

137063**slide

l Introduction to the UltraScale Architecture

l UltraFast Design Methodology

l HDL Coding Techniques

After completing this module, you will be able to:
˃ Identify how the use of control signals (sets, resets, and clock enables) can impact your device

utilization

˃ Describe the benefits of following Xilinx recommendations on resets

˃ Describe the difference between the inference and instantiation

˃ Code for your design so that you can infer the dedicated hardware resources

˃ Describe the recommended coding techniques

Objectives
1
- 2

>> HDL Coding Techniques - 1-43 © Copyright 2019 Xilinx 118035

118037**slide

˃ Each flip-flop has three control signals
– CK – clock
– CE – clock enable (active High)
– SR – asynchronous/synchronous set/reset (active High)

 Either set or reset can be implemented (but not both)

˃ A grouping of control signals is a control set

˃ Designs with fewer control sets have more options and flexibility in terms of placement

Control Signals
1
- 3

>> HDL Coding Techniques - 1-44 © Copyright 2019 Xilinx 118035

˃ Clocks and asynchronous set/resets always gets connected to flip-flop control signals
– They cannot be moved to the datapath (to build equivalent logic with a LUT)

˃ Clock enables and synchronous set/resets
– Connected to flip-flop control signals when most of the flip-flops in a slice share the same control sets

(this is decided by the tools)
– Can be moved to the datapath (to a LUT input)

˃ Asynchronous sets/resets have priority access to the control signals over synchronous sets/resets
– For example, if a global asynchronous reset and a local reset are inferred on a single register

 The asynchronous reset gets the port on the register
 The synchronous reset gets mapped to a LUT input

Control Port Usage Rules
1
- 4

>> HDL Coding Techniques - 1-45 © Copyright 2019 Xilinx 118035

˃ Two kinds of resets are still supported—global and local
– Global: performed automatically after configuration has finished

 Performed by default and does not need to be coded into the design
 Access to this net is done with the global set/reset (GSR) port from the Startup component

▪ Access is only necessary if you want to perform a global reset a second time
▪ Note that if you are coding a global reset into your HDL, you are actually coding in a second reset

– Local: Internally generated targeted reset
 Used as a standard part of some components behavior (FSM, counters, etc.)

Resets
1
- 5

>> HDL Coding Techniques - 1-46 © Copyright 2019 Xilinx 118035

˃ Asynchronous resets
– Deassertion should be synchronous
– Otherwise creates problems such as metastability
– Use a reset bridge (use of two flip-flops back-to-back)

˃ Synchronous sets/resets make FPGA designs more reliable
– Do not need any special timing constraints
– Are often the most critical net in a design
– Are more predictable and stable
– Less susceptible to accidentally missing timing, runt pulses, or other phenomenon from upsetting logical

functionality
– Less prone to race conditions
– Note that the release of an asynchronous signal may not always have predictable timing results

Synchronous Versus Asynchronous Resets
1
- 6

>> HDL Coding Techniques - 1-47 © Copyright 2019 Xilinx 118035

118038**slide

˃ Using both a set and a reset will require additional logic
– Flip-flops cannot implement a set and a reset without additional LUTs

 This may or may not create an extra level of logic on the datapath
 Use of an asynchronous set and reset can affect timing and resource utilization and should be avoided

˃ For example
always @(posedge reset, posedge set, posedge clk)

if (reset)

a_reg
else if
a_reg

else
a_reg

<= 1'b0;
(set)
<= 1'b1;

<= A;

– This would require extra logic to generate a single asynchronous set or reset signal from two signals
– Instead use synchronous control signals

Avoid the Use of Both a Set and Reset on a Flip-Flop
1
- 7

>> HDL Coding Techniques - 1-48 © Copyright 2019 Xilinx 118035

˃ Coding mistakes and the random use of resources and control sets can lead to reduced utilization
and speed/performance of a device

˃ Xilinx recommends the following guidelines to ensure design efficiency
– Take advantage of hard blocks to map large register arrays
– Use as many of the dedicated resources as possible (SRLs, DSP slices, block RAMs)
– Turn off the Logic Replication synthesis option to reduce your design size
– Control the use of clock enables with HDL code

Resource-Aware Coding
1
- 8

>> HDL Coding Techniques - 1-49 © Copyright 2019 Xilinx 118035

˃ Faster than LUTs/flip-flops

˃ Consumes less power

˃ Timing of the dedicated blocks is already taken care of

˃ Offers as much as three times the performance

˃ DSP48E, FIFO, block RAM, ISERDES, etc.

˃ Xilinx recommends the use of dedicated resources

Dedicated Resources
1
- 9

>> HDL Coding Techniques - 1-50 © Copyright 2019 Xilinx 118035

˃ The key to Xilinx optimization is accessing and controlling device-level resources, as well as
overall place & route results

– From an HDL perspective, there are only two means to access any resource

˃ Inference
– Generic HDL code

 Synthesis tool decides which vendor
library to use

– Device optimization as per tool ability
– Maximum portability

˃ Instantiation
– Create "instance" of
– Designer references specific vendor

macro
– Maximum device optimization
– May be required
– Limits portability

Inference Versus Instantiation
1
- 1
0

>> HDL Coding Techniques - 1-51 © Copyright 2019 Xilinx 118035

129045**slide

˃ Components can be inferred in the design by synthesis
tool by providing their functionality

˃ Can be inferred by all synthesis tools
– Shift register LUT (SRLC32E)
– F7, F8, and F9 multiplexers
– Carry logic
– Multipliers and counters using the DSP block
– Global clock buffers (BUFG)
– SelectIO (single-ended) standard
– I/O registers (single data rate)
– Input DDR registers

˃ Can be inferred by some synthesis tools
– Memories
– Global clock buffers (BUFGCE, BUGFCTRL)
– Some complex DSP functions

˃ Cannot be inferred by any synthesis tools
– SelectIO (differential) standard
– Output DDR registers
– MMCM/PLL
– Local clock buffers (BUFIO, BUFR,

BUFG_LEAF)

Resources Inference
1
- 1
1

>> HDL Coding Techniques - 1-52 © Copyright 2019 Xilinx 118035

129046**slide

˃ Components can be instantiated in the design by using adding an instance in the HDL code

˃ Xilinx recommends that you instantiate the following elements
– Memory resources

 Block RAMs specifically (use the IP catalog)
– SelectIO technology standard resources
– Clocking resources

 MMCM, PLL (use the IP catalog)
 IBUFG, BUFGMUX, BUFGCE
 BUFIO, BUFR

Instantiation
1
- 1
2

>> HDL Coding Techniques - 1-53 © Copyright 2019 Xilinx 118035

˃ Xilinx recommends that designers regularly initialize their registers on any inferred flip-flop, SRL,
or RAM
signal reg: std_logic := '1';

...
process (clk) begin

if rising_edge(clk) then if (rst='1') then
reg <= '0'; else
reg <= val;

end if; end if;
end process;

˃ Benefits
– The initialization eliminates the need to specify a set condition for the sole purpose of simulation (creating

a logic one)
– This saves resources and allows the RTL to more accurately behave as the FPGA

Register Initialization
1
- 1
3

>> HDL Coding Techniques - 1-54 © Copyright 2019 Xilinx 118035

118047**slide

˃ Avoid coding for active low control signals

˃ Controlling the use of clock enables with HDL code will decrease the LUT use

˃ Avoid unnecessary use of sets and resets; if required, use the synchronous set/reset

˃ Avoid asynchronous resets on block RAMs, DSPs

˃ Limit the use of low fanout control signals

˃ Synthesis tools can move synchronous resets from control ports to the datapath

˃ Xilinx recommends not using the synthesis option to convert asynchronous resets to synchronous

Coding Techniques
1
- 1
4

>> HDL Coding Techniques - 1-55 © Copyright 2019 Xilinx 118035

118039**slide

˃ Minimize the use of control sets wherever possible

˃ Use the local or global resets wisely

˃ Use of both a set and reset control signal cannot be implemented on a flip-flop without the use of
extra logic on the datapath

˃ Xilinx recommends that designers regularly initialize their registers on any inferred flip-flop, SRL,
or RAM

˃ Use of the available dedicated resources offer three times performance

˃ The Vivado Design Suite should be used to manage control signal replication, rather than
designers manually replicating logic

Summary
1
- 1
5

>> HDL Coding Techniques - 1-56 © Copyright 2019 Xilinx 118035

118049**slide

