Xilinx UltraScale and UltraScale+

ERFIAH R VR

7k &% Kenson.Zhang

KIT R B Il 4 B

XILINX.

® Introduction to the UltraScale Architecture
® UltraFast Design Methodology

® HDL Coding Techniques

& XILINX

'Kintex and Virtex UltraScale Device Portfolio

KINTEX

UltraSCALE

XCKU115

vIRTEX” [| VIRTEX

I UlraSCALE
= i . ot LitraSCALE
VIRTEX™ VIR
™ b4 - I|. P maalsALR

UltraSCALE XCVU125 XCVU145 XCVU160

Family Migration Path

v Scalability for derivative applications

v Leverage PCB investment across platforms

v Future-proof with migration path to 16 nm

>> Introduction to the UltraScale Architecture - 1-3 © Copyright 2019 Xilinx 117943

& XILINX

'Kintex and Virtex UltraScale FPGA 20nm Capabilities

Logic Cells (LC)
Block RAM (BRAM) (Mbits)
DSP-48

Feak DSP Performance_ (GMACs)
;ransceive_r Count

Feak Transceiver LineT?ate (Gb/s)
.Peak Transceiver Bandwidth (Gb/s)
PC| Express Blocks

Memory Interface Performance (Mb/s)

I/O Pins

? KINTEX

UitraSCALE

478
34
1,920
2,845
32
12.5

800

1,866
500

>> |ntroduction to the UltraScale Architecture - 1-4

© Copyright 2019 Xilinx

1,995
68
3,600
9,335
96
28.05

2,784

1,866
1,200

? VIRTEX?

UhraSCALE

117943

& XILINX

'UItraScaIe Architecture Layout

> Side-by-side layout comparison (typical layout)

Kintex UltraScale Device Virtex UltraScale Device

 Columns of /O » Columns of /O

» Columnsof GT » Columns of GT

» Columns of CLBs, Block RAM + Columns of CLBs, Block RAM
and DSP and DSP

>> Introduction to the UltraScale Architecture - 1-5 © Copyright 2019 Xilinx 117943

& XILINX

'Silicon Architecture Address Interconnect Bottleneck for
Next-Generation Designs

> Routing delay dominates overall delay — Sub-Optimal CLB Packing

Saice

> Clock skew consumes more timing margin

B |

clock skew

E@IE[

> Sub-optimal CLB packing reduces performance and
utilization

<— routing delay—s

——— Sub-Optimal CLB Packing

117943

& XILINX

>> Introduction to the UltraScale Architecture - 1-6 © Copyright 2019 Xilinx

'Next-Generation Routing for Utilization, Performance, and

Run Time

e # L 0gic Elements grow in O(N2)

s # Routing Tracks grow in O(N)

N

T

Small device N g
s

D Previous 2x Routing Resource
| Logic: 4

D Tracks: 2

Medium device D

o

D Tracks: 4

More Paths + Flexible Switching + Analytical Placement
Close the Gap and Deliver Full Routability

Interconnect Architectures

-
Logic: 9 D.‘\—'

Small, Agile
Flexible Switching

Effect of

Logic Elements routing

Large device D ﬁ

(.

O[N3)

resources

Logic: 16 & analytical

—::

placement

>> |ntroduction to the UltraScale Architecture - 1-7

|

00 ..
DHD Tracks: 6
0]

Interconnect tracks O{N)

© Copyright 2019 Xilinx

117943

& XILINX

'ASIC-Iike Clocking Maximizes Performance Margin and
Reduces Dynamic Power

+ Clock resources scale with device density
+ Minimizes clock route wire length
* Lowers dynamic power due to global clock net switching

Regional and segment-able clocking
infrastructure

« Balanced skew across clock distribution network

Clock network centered on user logic delershigherperbrmanice

+ 100s of global buffers with 1000s of placement options

e + Massive flexibility for global clock placement

<+ SE

| | A VSR R SV B U |
Previous Clocking Architectures UltraScale FPGA Clock Routes
(Fixed Number of Clock Buffers) (Global Clock Buffers Scale)
>> Introduction to the UltraScale Architecture - 1-8 © Copyright 2019 Xilinx 117943

& XILINX

'Benefits of UltraScale FPGA Clock Architecture

Global Clock Leaf Call
Network Clocks

> 32 centrally located global clock buffers
> Root always in center of device

> Skew accumulates from center to edge

>> |ntroduction to the UltraScale Architecture - 1-9

Distri;uted
Qe esou,

Distribugion. Clocks Rousng Clocks

Clock Root

> 192 — 720 distributed global buffers
> Root can be in any clock region
> Balanced skew per clock network

© Copyright 2019 Xilinx

117943

& XILINX

CLB Enables Tighter Packing

UltraScale CLB Fipfops shanng s=me

CE are same color

CLB = Sice T

|Removed slice boundary & added MUX Widercarry chain

« Wider functions per block - * Wider functions per block Slice0 i
[* 2x distributed RAM density =

Dedicated inputs foreach flip-flop [I =
= Higherperformance .

| = Reduces LUT utilization

r ™™
n;'; J
bl bl
pinaty

UltraScale

S
=

{
.

—

h—#

| CE ignore and RST ignore, RST inversion | 2« the number of CE's

= Higher performance = Impraves CLB packing
* Eliminates synchronous resetbotilenecks

%
—B

=l
e

*
i
Y

Flip-flops sharing same

— Dy J';r -} ;I_
RSTignore, imerson — Y RET CE are same color M —-;'
CEignore —CE ..||i . J:
|

T

>> Introduction to the UltraScale Architecture - 1-10 © Copyright 2019 Xilinx 117943

& XILINX

27x18 multiplierin a DSP slice;

35x28 supportin aDSP tile (2 slices)

+ Optimal

+ Implement double-precisionfloating point in two-thirds the fabric

Enhanced DSP Sub-Systems for Performance and
Efficiency

performance per block

Pre-adder squaring

+ More efficient motion estimation in video applications
+ Perform ‘sum-ofsquare-diffierence” calculations in 50% fewer resources

Extra accumulator feedback path

Implement complex multiply-accumulate in half the resources

5 high speed
Interconnects

>> |ntroduction to the UltraScale Architecture - 1-11

Wide XOR Implement EFEC, CRC, ECC functionality
White box modeling Full visibility with accurate simulation and debug
FYeaden paing Extra accumulator
... fleedback path
DSP48 Tile

DSP48E2

Slice

8EZ

Slice

. ‘*!||

o—{]
c—*ﬂ |

~

On

v

L 4

- Muliplier |

Pre Adder White Box :‘White B!

© Copyright 2019 Xilinx

Pattem Detéi:t

ALUWhite Box

& XILINX

Optimized Block RAM Alleviate Bottlenecks for Many
Applications

Built-in, high-speed memory cascading Eliminates CLB usage, reduces routing congestion and dynamic power consumption

+ Lower power, greater performance than soft FIFO
Enhanced FIFO + Easy migration to soft core implementation for additional functionality
+ Asymmetric read and write port widths for clock domain crossings

User-accessible power gating of active BRAM | Reduces dynamic power when access to block RAM contents is temporarily not needed

7 Series UltraScale
(2k x 36 RAM) (2k x 36 RAM) .

(logicfabric)

ouT

LR - ' EN;
Addr ———lDecoder|— — Addr —{Pecoder|[<
(logicfabric) —— BRAM
BRAM =
DIN >| 512x36 ‘ AP 3is12x38| [
512%36 -
BRAM (logic fabric) —|| BRAM
DIN ——){ 512x36 | P DIN R [512x36]| o
512%36 L—" pouT > (hardened muiplexers)
Wia
BRAM ‘ BRAM
DIN > M2x36 | DIN = 1512 % 36 i
- = i]
512x36 4
;
BRAM }—
5 5M2x 36 — || BRAM
R DIN —— | [512x 36 1
>> Introduction to the UltraScale Architecture - 1-12 © Copyright 2019 Xilinx

117943

& XILINX

Feature

Delivering Massive I/O Serial Bandwidth

Benefit

GTH (16 Gb/s) for price-performance

+ 12.5Gb/s performance in the lowest speed grade

« Enabled std: PCle Gend (16G), JESD204B (12.5G), CPRI (16.3G), Serial Memory (HMC & MoSys)

GTY (32 Gb/s) for highest performance

» 28Gh/s (CEI-25G-LR) backplane support for Nx100G to 400G systems
* Support for Interlaken, OTU4 over CFP4, 802 3bj (28G Ethernet backplane)

Major power reduction

~40% lower power for 10G backplanes

Continuous auto-adaptive equalization

Continuously optimizes link margin over PVT in increasingly challenging channel conditions

Kintex Virtex
UltraScale UltraScale

>> |ntroduction to the UltraScale Architecture - 1-13

2x Aggregate Bandwidth (Gb/s)

Half the Power

~40% Lower

5.096

m 7 Series

m UltraScale

Virtex-7 vs. Virtex
UltraScale

Kintex-T vs. Kintex
UltraScale

© Copyright 2019 Xilinx

10G Backplanes

117943

& XILINX

Integrated 100G Ethernet MAC, 150G Interlaken

Large Scale Integration

* More headroomfor power budget

+ Lowerlatency and higher performance

*» Freesup logicfor addiional functionality, e g., packet processing
+ Simplified flow and easier routing for shorter run-imes

+ No licensing requirements

Multiple configuration options

Flexibility to meet existing and future design requirements

Resource Savings

"l
(42 lane, 106)

" EthernetMAC + PCS UltraScale
(10x10G) Integrated IP

>> |ntroduction to the UltraScale Architecture - 1-14

Configuration Options Dynamic Power Savings

Lanes x Line Rate B 7 Series mUltraScale

150G Upto Upto
Interlaken 12 x 12.5Ghis 6 x 25 Ghis
100GEMAC 10 x10 Ghis 4 x 25Ghis ‘

80%
y

Interlaken MAC Ethernet MAC

© Copyright 2019 Xilinx

117943

& XILINX

'Enabling Massive External Memory Bandwidth

DDR4 support (up to 2400 Mb/s)

40% higher data rates & 20% lower powerthan DDR3

Greater flexibility for different datarates

Up to two confrollers per 'O bank

Next generation integrated PHY

Lowlatency along with high performance and low power

TX Pre-emphasis and RX linear equalization (CTLE)

= Optimizes link margin for highest bandwidth
« Eases board design

MIA DDR4-2400 Mb/s
DDR3-1566 Mbv's DOR3-2133 Mbv's
DDR3L- 1600 Mbvs DDR3L-1866 Mh's
RLDRAM 2 RLDRAM 2
RLDRAM 3 RLDFEAM 3
QORI+ CORI+
QDR ||+ Xireme
LFDDR2 LPDDR2
L

>> |ntroduction to the UltraScale Architecture - 1-15

< Logic Fabric Integrated PHY 1/0s
Memory
Controller 1 /O Bank A
Memory
Controller 2
Controller 3
Adaptable, Scalable Up to 2 Controllers Low Pre-emphasis (TX) &
A4 Configuration perl0 Bank Latency Linear Equalization [RX)
(Flexibility for Signal Integrity

© Copyright 2019 Xilinx

REN
[

117943

& XILINX

'Enhanced PCIl Express Gen3 Integrated Core

Built on existing Virtex-7 XT/HT core Stability and production-proven foundation

Gen3d supportin all devices & speed grades | Increase performance at lower price points

Transaction layer bypass mode Ability to add additional physical & virtual functions for diverse topologies

Integrated circuitry for 100ms configuration | Meets PCI Express specification

Transaction Layer Bypass Mode Transceivers

- |] 7 Series 7 Series UltraScale
Gen2 PCle Gen PCle Gen3 PCle
PCl Express Block Gen 3
End-ip-end CRC v v v
Tramsiachion i Advanced Error Reporing v v v
Soft Layer]
Trangaction ‘ y Tag Management v v
Layer | "
2 Physical Funcons v v
A l l ¥ 6 Vinual Funcions v v
- »
Configuration Configuration module v
M\fﬂlﬂe g b Transacion Layer Bypass v
Less than 100ms configuradon v
Block RAM ..
>> Introduction to the UltraScale Architecture - 1-16 © Copyright 2019 Xilinx 117943

& XILINX

'Summary

> The CLB architecture, routing architecture, and the Vivado Design Suite are designed to eliminate
routing congestion

> UltraScale devices have an ASIC-like clocking architecture that provides flexibility and
performance for clock distribution

> Logic enhancements reduce timing problems and design bottlenecks

> /0O and transceiver bandwidth improvements are significant new features in the UltraScale
architecture

>> Introduction to the UltraScale Architecture - 1-17 © Copyright 2019 Xilinx 117943

& XILINX

® Introduction to the UltraScale Architecture
® UltraFast Design Methodology

® HDL Coding Techniques

& XILINX

'()bjectives

After completing this module, you will be able to:
> Describe the RTL coding guidelines

> Use control sets effectively in your design
> Create an IP subsystem using IP integrator
> Explain the Timing Reports generated by the Vivado® Design Suite

> Apply Timing Exceptions to your design if necessary

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

o & XILINX

'Defining a Good Design Hierarchy

> Add I/O components near the top level

> Insert clocking elements near the top level

> Register data paths at logical boundaries

> Address floorplanning considerations

> Qptimize hierarchy for functional and timing debug
> Apply attributes at the module level

> QOptimize hierarchy for advanced design techniques

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'RTL Coding Guidelines

> Use Vivado Design Suite HDL templates
> Control signals and control sets

> Resets

> Know what you infer

> Coding styles to improve performance

> Coding styles to improve power

> Running RTL DRCs

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

h & XILINX

'HDL Coding Style Impact

> Follow recommended Vivado language templates for RAM and DSP inference
> Use as many of the dedicated resources as possible (SRLs, DSP slices, block RAMs)
> Pipeline your design to reduce levels of logic

> Avoid reset

— Resets can tax routing resources and are not always needed because Xilinx FPGAs always boot in a
known state

> Synchronous resets are preferred
— Allow packing of registers into dedicated RAM and DSP blocks

> Dedicated shifters (SRLs); do not use resets

> RAM memory bits; do not use resets

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Control Signals and Control Sets

> A control set is the grouping of control signals (set/reset, clock enable and clock) that drives any
given SRL, LUTRAM, or register

> Designs with several unique control sets may have many wasted resources as well as fewer
options for placement, resulting in higher power and lower performance

> Designs with fewer control sets have more options and flexibility in terms of placement, generally
resulting in improved results

> |n 7 series devices, slices all share common control signals and thus only registers with a
common control set may be packed into the same slice

> |In UltraScale™ devices, there is more flexibility in control set mapping within a CLB

— Resets that are undriven do not form part of the control set as the tie off is generated locally within the
slice

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Using Resets

> Increase performance with the right reset choice
— No reset at all (if possible) is best
— Synchronous rather than asynchronous reset
— Active HIGH rather than active low reset
— Default register value can be controlled via the INIT property

I Used Register
i)

B Unused Register

Asynchronous reset
emulation circuitry

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Resets Recommendations

> Remove resets where possible
— Use INIT for initialization and only use explicit resets where needed

> Use synchronous set/reset instead of asynchronous preset/clear when possible
— Synchronous resets can be more efficient

> When global resets are required, consider clock gating with BUFGCE to minimize timing impact of
global resets
— Allows more freedom to the placer and router

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'I'ips for Control Signals

> Check whether a global reset is really needed

> Avoid asynchronous control signals

> Keep clock, enable, and reset polarities consistent

> Do not code a set and reset into the same register element

> If an asynchronous reset is absolutely needed, remember to synchronize its deassertion

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Know What You Infer

> Anticipate hardware resources mapping when coding
> Monitor actual result in elaborated design

> RAM
— Check for multi-fanout on the output of read data registers
— Check for reset signals on the address/read data registers
— Check for feedback structures in registers
e Take retiming into account!

> Optimal DSP and arithmetic inference

— Fully pipeline code for DSP48

— Avoid set or asynchronous reset around DSP48 (only synchronous reset)

— Use signed values for most efficient, full-bit mapping

— Beware of bus sizing
e Can prevent synthesis from using the block fully while being logically correct
e Account for bit growth for pre-adder / M to P path

— Use pipelined (adder) chain instead of (adder) tree

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

o & XILINX

'Improving Performance

> High fanouts in critical paths
— Reduce loads to the portions of the design that do not require it

— Use register replication
e Increases the speed of critical paths by making copies of registers to reduce the fanout of a given signal

> Pipelining
— Restructure the long datapaths with several levels of logic and distribute them over multiple clock cycles

— Allows for a faster clock cycle and increased data throughput at the expense of latency and pipeline
overhead logic management

— Consider pipelining up front
— Balance latency
— Avoid unnecessary pipelining

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Improving Power

> (Gate clock or data paths
— Common technique to prevent switching/glitches from propagation
— The Vivado Design Suite gates logic for power, but some dependencies the tool does not know

> Maximize gating elements
— Gate entire clock domain

> Use clock enable pins of dedicated clock buffers
— Avoid LUTs or other methods to gate clock-signals

> Keep an eye on control sets
— Avoid fine-grained clock gating

> Use case block when priority encoder not needed
— Avoid large if-then-else constructs

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Performance/Power Trade-off for Block RAMs

> 32k x 32-bit RAM with cascade height O R)
cascade_height = ad

— Variations using cascade_height (all 32 BRAMSs) reg [31:01 mem [(2%*15)-1:01;
reg [14:0] addr_reg;

cascade height = 1 cascade height = 32 () cascade_height = 8

Repeated 4 times

B2RXT] A TRx32
: I 32
37Kx1 ' [TRX3Z

z =_|

. |Fmax=575 mHz | aee | Fmax=93 MHz g 32 Fmax=295 MHz
32RXT 87mW@100MHz [TRxSZ2 1l 8mw@100MHz 4Kxg 15mW@&100MHz
per BRAM per BRAM ; per BRAM
Each BRAM is: Each BRAM is: Each BRAﬁ is:
W=1 D=15 W=32 D=10 W=8 D=12
= 32 BRAMSs enabled - 1 BRAM enabled per = 4 BRAMs enabled for each

- No extra logic access access
- Lower power Power / Performance tradeoff

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Best Practices for Power Analysis

> Use the Vivado Report Power to estimate the power through all stages of a design
— The accuracy of the power estimates varies depending on the design stage when the power is estimated

> Use Report Power in either of the two supported modes to estimate power depending on accuracy required
— Vector-based power estimation is a more accurate estimate than vector-less mode

> Use accurate clock constraints and /O constraints in your design to obtain accurate power analysis

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

h & XILINX

'Using the UltraFast Design Methodology DRCs

> The Vivado Design Suite contains a set of methodology-related DRCs you can run using the
report methodology Tcl command

> This command has rules for each of the following design stages
— Before synthesis in the elaborated RTL design to validate RTL constructs
— After synthesis to validate the netlist and constraints
— After implementation to validate constraints and timing-related concerns

> For maximum effect, run the methodology DRCs at each design stage and address any issues
prior to moving to the next stage

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

Automated UltraFast Design Methodology Report

> The UltraFast Design Methodology report is automatically generated whenever a design that has

violations is opened after synthesis or implementation

Methodology ? 0O &1 X
Q < = o4 W ¥ 134 Warnings Hide All
Name Severity -1 Details

~ & All Violations (134)

~ & Synthesis (37)

v @ RAM(33)
¥ SYNTH-6 (33)
~ @ DSP(4)
b SYNTH-10 (4}
SYMNTH #1 Warning Detected multiplier at p00 of size 15x18, it is decomposed from a wide multipler into 4 DSP blocks.
SYMNTH #2 Warning Detected multiplier at p00 0 of size 15215, itis decomposed from a wide multipler into 4 DSP blocks.
SYNTH #3 Warning Detected multiplier at p00 1 of size 18x18, itis decomposed from a wide multipler into 4 D3P blocks.
SYMNTH #4 Warning Detected multiplier at p00 2 of size 18x15, it is decomposed from a wide multipler into 4 DSP blocks.
» i Timing (4)
» om XDC (93)
< »

ultrafast_methodology_1 {134 violations)

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx

1-33

119988

& XILINX

'Working with IP: Packaging Custom IP

> Pre-validated intellectual property (IP) cores significantly reduce design and validation efforts, and ensure a
large advantage in time-to-market

> Xilinx uses the industry standard IP-XACT format for delivery of IP, and provides tools (IP Packager) to
package custom IP

> The Vivado IP packager enables you to create custom IP for delivery in the Vivado IP catalog
> Before packaging your IP HDL, ensure its correctness by simulating and synthesizing to validate the design

> Ensure that the desired list of supported device families is defined properly while creating the custom IP
definition
— This is especially important if you want your IP to be used with multiple device families

> The IP catalog is a single location for Xilinx-supplied IP
— All Xilinx and third-party vendor IPs are categorized based on applications here

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Creating IP Subsystems with IP Integrator

> |P integrator is the interface for connecting IP cores to create domain specific subsystems and
designs

> |P subsystems are best configured using the IP integrator feature of the Vivado IDE

— Interactive block design capabilities of the IP integrator make the job of configuring and assembling
groups of IP easy

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Revision Control

> Manage sources in the Vivado Design Suite® with the revision control system
— HDL, IP XClI, IP BD, XDC, Tcl scripts, etc.
— Manage different source types in separate remote directories

> Two main revision control strategies

— Maximum flexibility
e Shorter runtime to rebuild the project

— Minimum number of files
e Least number of files to manage at the expense of flexibility

> Xilinx recommends following the maximum flexibility strategy
— Alarge number of files in revision control maximizes flexibility

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Using Timing Reports

> Create and validate clocks
— check timing: for missing clocks and I/O constraints

— report clocks: check frequency and phase
— report clock networks: possible clock root

> Validate clock groups
— report clock interaction

> Validate /O delays
— report timing —-from [input port] -setup/-hold
— report timing -to [output port] -setup/-hold

> Add exceptions if necessary
— Validate using report timing

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

£ XILINX.

'Understanding the Timing Reports

> Timing Summary report provides high-level information on the timing characteristics of the design

> Use the Timing Summary report for sign-off post-implementation

> Use the Check Timing report to identify any missing timing constraints in the design

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Working with Constraints

> Design constraints define the requirements that must be met by the design in order for the design
to be functional in hardware

> Synthesis and implementation constraints

> Timing constraints

— Process of defining good timing constraints is broken into the four steps
e Defining clock constraints
e Constraining input and output ports
e Defining clock groups and CDC constraints
e Specifying timing exceptions

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'I'iming Exceptions: Less is More!

> Goals
— Avoid higher implementation run times
— Adjust unrealistic timing requirements to help timing closure

> Start with fewer or no exceptions
— Meeting timing with fewer exceptions is OK
— Use clock group exceptions rather than point-to-point exceptions
— Avoid complex expressions with filters
— Avoid exceptions affecting too many paths

> Avoid these constraint types
— set false path —-through...

— set max delay —-from [all fanout —-from ckl] —-to [all fanout -from ck2]

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

- & XILINX

'Summary

> Use the given RTL coding guidelines
— Use Vivado Design Suite HDL templates
— Control signals and control sets
— Resets
— Know what you infer
— Coding styles to improve performance
— Coding styles to improve power
— Running RTL DRCs

> The Vivado IP packager enables you to create custom IP for delivery in the Vivado IP catalog

> Timing reports help you determine why your design fails to meet its constraints

>> UltraFast Design Methodology: Design Creation - © Copyright 2019 Xilinx 119988

h & XILINX

® Introduction to the UltraScale Architecture
® UltraFast Design Methodology

® HDL Coding Techniques

& XILINX

'()bjectives

After completing this module, you will be able to:

> |dentify how the use of control signals (sets, resets, and clock enables) can impact your device
utilization

> Describe the benefits of following Xilinx recommendations on resets
> Describe the difference between the inference and instantiation
> Code for your design so that you can infer the dedicated hardware resources

> Describe the recommended coding techniques

>> HDL Coding Techniques - 1-43 © Copyright 2019 Xilinx 118035

& XILINX

'Control Signals

> Each flip-flop has three control signals
— CK - clock
— CE - clock enable (active High)

— SR — asynchronous/synchronous set/reset (active High)
e Either set or reset can be implemented (but not both)

> A grouping of control signals is a control set

> Designs with fewer control sets have more options and flexibility in terms of placement

>> HDL Coding Techniques - 1-44 © Copyright 2019 Xilinx 118035

& XILINX

'Control Port Usage Rules

> Clocks and asynchronous set/resets always gets connected to flip-flop control signals
— They cannot be moved to the datapath (to build equivalent logic with a LUT)

> Clock enables and synchronous set/resets

— Connected to flip-flop control signals when most of the flip-flops in a slice share the same control sets
(this is decided by the tools)

— Can be moved to the datapath (to a LUT input)

> Asynchronous sets/resets have priority access to the control signals over synchronous sets/resets

— For example, if a global asynchronous reset and a local reset are inferred on a single register
e The asynchronous reset gets the port on the register
e The synchronous reset gets mapped to a LUT input

>> HDL Coding Techniques - 1-45 © Copyright 2019 Xilinx 118035

& XILINX

'Resets

> Two kinds of resets are still supported—global and local
— Global: performed automatically after configuration has finished

e Performed by default and does not need to be coded into the design

e Access to this net is done with the global set/reset (GSR) port from the Startup component
= Access is only necessary if you want to perform a global reset a second time
Note that if you are coding a global reset into your HDL, you are actually coding in a second reset

— Local: Internally generated targeted reset
e Used as a standard part of some components behavior (FSM, counters, etc.)

>> HDL Coding Techniques - 1-46 © Copyright 2019 Xilinx 118035

& XILINX

'Synchronous Versus Asynchronous Resets

> Asynchronous resets
— Deassertion should be synchronous
— Otherwise creates problems such as metastability
— Use a reset bridge (use of two flip-flops back-to-back)

> Synchronous sets/resets make FPGA designs more reliable
— Do not need any special timing constraints
— Are often the most critical net in a design
— Are more predictable and stable

— Less susceptible to accidentally missing timing, runt pulses, or other phenomenon from upsetting logical
functionality

— Less prone to race conditions
— Note that the release of an asynchronous signal may not always have predictable timing results

>> HDL Coding Techniques - 1-47 © Copyright 2019 Xilinx 118035

& XILINX

'Avoid the Use of Both a Set and Reset on a Flip-Flop

> Using both a set and a reset will require additional logic
— Flip-flops cannot implement a set and a reset without additional LUTs
e This may or may not create an extra level of logic on the datapath
e Use of an asynchronous set and reset can affect timing and resource utilization and should be avoided

> For example

always @ (posedge reset, posedge set, posedge clk)
if (reset)

a reg <= 1'b0;
else if (set)

a reg <= 1'bl;
else

a reg <= A;

— This would require extra logic to generate a single asynchronous set or reset signal from two signals
— Instead use synchronous control signals

>> HDL Coding Techniques - 1-48 © Copyright 2019 Xilinx 118035

& XILINX

'Resource-Aware Coding

> Coding mistakes and the random use of resources and control sets can lead to reduced utilization
and speed/performance of a device

> Xilinx recommends the following guidelines to ensure design efficiency
— Take advantage of hard blocks to map large register arrays
— Use as many of the dedicated resources as possible (SRLs, DSP slices, block RAMSs)
— Turn off the Logic Replication synthesis option to reduce your design size
— Control the use of clock enables with HDL code

>> HDL Coding Techniques - 1-49 © Copyright 2019 Xilinx 118035

& XILINX

'Dedicated Resources

> Faster than LUTs/flip-flops

> Consumes less power

> Timing of the dedicated blocks is already taken care of
> QOffers as much as three times the performance

> DSP48E, FIFO, block RAM, ISERDES, etc.

> Xilinx recommends the use of dedicated resources

>> HDL Coding Techniques - 1-50 © Copyright 2019 Xilinx 118035

& XILINX

' Inference Versus Instantiation

> The key to Xilinx optimization is accessing and controlling device-level resources, as well as
overall place & route results
— From an HDL perspective, there are only two means to access any resource

> |Instantiation
— Create "instance" of

— Designer references specific vendor
macro

— Maximum device optimization
— May be required
— Limits portability

> Inference
— Generic HDL code

e Synthesis tool decides which vendor
library to use

— Device optimization as per tool ability
— Maximum portability

>> HDL Coding Techniques - 1-51 © Copyright 2019 Xilinx 118035

& XILINX

' Resources Inference

> Can be inferred by some synthesis tools

— Memories
— Global clock buffers (BUFGCE, BUGFCTRL)
— Some complex DSP functions

> Components can be inferred in the design by synthesis
tool by providing their functionality

> Can be inferred by all synthesis tools
— Shift register LUT (SRLC32E)

_ F7, F8, and F9 multiplexers > Cannot be inferred by any synthesis tools

— SelectlO (differential) standard

— Carry logic |
— Multipliers and counters using the DSP block — Output DDR registers
— Global clock buffers (BUFG) - MMCM/PLL

— Local clock buffers (BUFIO, BUFR,

— SelectlO (single-ended) standard
BUFG_LEAF)

— 1/0O registers (single data rate)
— Input DDR registers

>> HDL Coding Techniques - 1-52 © Copyright 2019 Xilinx 118035

& XILINX

'Instantiation

> Components can be instantiated in the design by using adding an instance in the HDL code

> Xilinx recommends that you instantiate the following elements
— Memory resources
e Block RAMs specifically (use the IP catalog)
— SelectlO technology standard resources
— Clocking resources
e MMCM, PLL (use the IP catalog)
e IBUFG, BUFGMUX, BUFGCE
e BUFIO, BUFR

>> HDL Coding Techniques - 1-53 © Copyright 2019 Xilinx 118035

& XILINX

'Register Initialization

> Xilinx recommends that designers regularly initialize their registers on any inferred flip-flop, SRL,
or RAM

signal reg: std_logic :="1"

process (clk) begin
if rising_edge(clk) then if (rst="1") then
reg <='0'; else
reg <= val;
end if; end if;
end process;

> Benefits

— The initialization eliminates the need to specify a set condition for the sole purpose of simulation (creating
a logic one)
— This saves resources and allows the RTL to more accurately behave as the FPGA

>> HDL Coding Techniques - 1-54 © Copyright 2019 Xilinx 118035

& XILINX

'Coding Techniques

> Avoid coding for active low control signals

> Controlling the use of clock enables with HDL code will decrease the LUT use

> Avoid unnecessary use of sets and resets; if required, use the synchronous set/reset
> Avoid asynchronous resets on block RAMs, DSPs

> Limit the use of low fanout control signals

> Synthesis tools can move synchronous resets from control ports to the datapath

> Xilinx recommends not using the synthesis option to convert asynchronous resets to synchronous

>> HDL Coding Techniques - 1-55 © Copyright 2019 Xilinx 118035

& XILINX

'Summary

> Minimize the use of control sets wherever possible
> Use the local or global resets wisely

> Use of both a set and reset control signal cannot be implemented on a flip-flop without the use of
extra logic on the datapath

> Xilinx recommends that designers regularly initialize their registers on any inferred flip-flop, SRL,
or RAM

> Use of the available dedicated resources offer three times performance

> The Vivado Design Suite should be used to manage control signal replication, rather than
designers manually replicating logic

>> HDL Coding Techniques - 1-56 © Copyright 2019 Xilinx 118035

& XILINX

