
Xilinx UltraScale and UltraScale+
架构介绍及设计方法学

1
- 1

张剑森 Kenson.Zhang

依元素科技培训经理

l Introduction to the UltraScale Architecture

l UltraFast Design Methodology

l HDL Coding Techniques

Kintex and Virtex UltraScale Device Portfolio
1
- 3

>> Introduction to the UltraScale Architecture - 1-3 © Copyright 2019 Xilinx 117943

Kintex and Virtex UltraScale FPGA 20nm Capabilities
1
- 4

>> Introduction to the UltraScale Architecture - 1-4 © Copyright 2019 Xilinx 117943

˃ Side-by-side layout comparison (typical layout)

UltraScale Architecture Layout
1
- 5

>> Introduction to the UltraScale Architecture - 1-5 © Copyright 2019 Xilinx 117943

118063**slide

˃ Routing delay dominates overall delay

˃ Clock skew consumes more timing margin

˃ Sub-optimal CLB packing reduces performance and
utilization

Silicon Architecture Address Interconnect Bottleneck for
Next-Generation Designs

1
- 6

>> Introduction to the UltraScale Architecture - 1-6 © Copyright 2019 Xilinx 117943

Next-Generation Routing for Utilization, Performance, and
Run Time

1
- 7

>> Introduction to the UltraScale Architecture - 1-7 © Copyright 2019 Xilinx 117943

ASIC-like Clocking Maximizes Performance Margin and
Reduces Dynamic Power

1
- 8

>> Introduction to the UltraScale Architecture - 1-8 © Copyright 2019 Xilinx 117943

˃ 32 centrally located global clock buffers

˃ Root always in center of device

˃ Skew accumulates from center to edge

˃ 192 – 720 distributed global buffers

˃ Root can be in any clock region

˃ Balanced skew per clock network

Benefits of UltraScale FPGA Clock Architecture
1
- 9

>> Introduction to the UltraScale Architecture - 1-9 © Copyright 2019 Xilinx 117943

CLB Enables Tighter Packing
1
- 1
0

>> Introduction to the UltraScale Architecture - 1-10 © Copyright 2019 Xilinx 117943

Enhanced DSP Sub-Systems for Performance and
Efficiency

1
- 1
1

>> Introduction to the UltraScale Architecture - 1-11 © Copyright 2019 Xilinx 117943

Optimized Block RAM Alleviate Bottlenecks for Many
Applications

1
- 1
2

>> Introduction to the UltraScale Architecture - 1-12 © Copyright 2019 Xilinx 117943

Delivering Massive I/O Serial Bandwidth
1
- 1
3

>> Introduction to the UltraScale Architecture - 1-13 © Copyright 2019 Xilinx 117943

Integrated 100G Ethernet MAC, 150G Interlaken
1
- 1
4

>> Introduction to the UltraScale Architecture - 1-14 © Copyright 2019 Xilinx 117943

Enabling Massive External Memory Bandwidth
1
- 1
5

>> Introduction to the UltraScale Architecture - 1-15 © Copyright 2019 Xilinx 117943

Enhanced PCI Express Gen3 Integrated Core
1
- 1
6

>> Introduction to the UltraScale Architecture - 1-16 © Copyright 2019 Xilinx 117943

˃ The CLB architecture, routing architecture, and the Vivado Design Suite are designed to eliminate
routing congestion

˃ UltraScale devices have an ASIC-like clocking architecture that provides flexibility and
performance for clock distribution

˃ Logic enhancements reduce timing problems and design bottlenecks

˃ I/O and transceiver bandwidth improvements are significant new features in the UltraScale
architecture

Summary
1
- 1
7

>> Introduction to the UltraScale Architecture - 1-17 © Copyright 2019 Xilinx 117943

117970**slide

l Introduction to the UltraScale Architecture

l UltraFast Design Methodology

l HDL Coding Techniques

After completing this module, you will be able to:
˃ Describe the RTL coding guidelines

˃ Use control sets effectively in your design

˃ Create an IP subsystem using IP integrator

˃ Explain the Timing Reports generated by the Vivado® Design Suite

˃ Apply Timing Exceptions to your design if necessary

Objectives
1
- 2

>> UltraFast Design Methodology: Design Creation -
1-19

© Copyright 2019 Xilinx 119988

119989**slide

˃ Add I/O components near the top level

˃ Insert clocking elements near the top level

˃ Register data paths at logical boundaries

˃ Address floorplanning considerations

˃ Optimize hierarchy for functional and timing debug

˃ Apply attributes at the module level

˃ Optimize hierarchy for advanced design techniques

Defining a Good Design Hierarchy
1
- 3

>> UltraFast Design Methodology: Design Creation -
1-20

© Copyright 2019 Xilinx 119988

137051**slide

˃ Use Vivado Design Suite HDL templates

˃ Control signals and control sets

˃ Resets

˃ Know what you infer

˃ Coding styles to improve performance

˃ Coding styles to improve power

˃ Running RTL DRCs

RTL Coding Guidelines
1
- 4

>> UltraFast Design Methodology: Design Creation -
1-21

© Copyright 2019 Xilinx 119988

137050**slide

˃ Follow recommended Vivado language templates for RAM and DSP inference

˃ Use as many of the dedicated resources as possible (SRLs, DSP slices, block RAMs)

˃ Pipeline your design to reduce levels of logic

˃ Avoid reset
– Resets can tax routing resources and are not always needed because Xilinx FPGAs always boot in a

known state

˃ Synchronous resets are preferred
– Allow packing of registers into dedicated RAM and DSP blocks

˃ Dedicated shifters (SRLs); do not use resets

˃ RAM memory bits; do not use resets

HDL Coding Style Impact
1
- 5

>> UltraFast Design Methodology: Design Creation -
1-22

© Copyright 2019 Xilinx 119988

˃ A control set is the grouping of control signals (set/reset, clock enable and clock) that drives any
given SRL, LUTRAM, or register

˃ Designs with several unique control sets may have many wasted resources as well as fewer
options for placement, resulting in higher power and lower performance

˃ Designs with fewer control sets have more options and flexibility in terms of placement, generally
resulting in improved results

˃ In 7 series devices, slices all share common control signals and thus only registers with a
common control set may be packed into the same slice

˃ In UltraScale™ devices, there is more flexibility in control set mapping within a CLB
– Resets that are undriven do not form part of the control set as the tie off is generated locally within the

slice

Control Signals and Control Sets
1
- 6

>> UltraFast Design Methodology: Design Creation -
1-23

© Copyright 2019 Xilinx 119988

137055**slide

˃ Increase performance with the right reset choice
– No reset at all (if possible) is best
– Synchronous rather than asynchronous reset
– Active HIGH rather than active low reset
– Default register value can be controlled via the INIT property

˃ Asynchronous reset interferes with DSP / RAM inference

Using Resets
1
- 7

>> UltraFast Design Methodology: Design Creation -
1-24

© Copyright 2019 Xilinx 119988

˃ Remove resets where possible
– Use INIT for initialization and only use explicit resets where needed

˃ Use synchronous set/reset instead of asynchronous preset/clear when possible
– Synchronous resets can be more efficient

˃ When global resets are required, consider clock gating with BUFGCE to minimize timing impact of
global resets

– Allows more freedom to the placer and router

Resets Recommendations
1
- 8

>> UltraFast Design Methodology: Design Creation -
1-25

© Copyright 2019 Xilinx 119988

137056**slide

˃ Check whether a global reset is really needed

˃ Avoid asynchronous control signals

˃ Keep clock, enable, and reset polarities consistent

˃ Do not code a set and reset into the same register element

˃ If an asynchronous reset is absolutely needed, remember to synchronize its deassertion

Tips for Control Signals
1
- 9

>> UltraFast Design Methodology: Design Creation -
1-26

© Copyright 2019 Xilinx 119988

137060**slide

˃ Anticipate hardware resources mapping when coding

˃ Monitor actual result in elaborated design

˃ RAM
– Check for multi-fanout on the output of read data registers
– Check for reset signals on the address/read data registers
– Check for feedback structures in registers

 Take retiming into account!

˃ Optimal DSP and arithmetic inference
– Fully pipeline code for DSP48
– Avoid set or asynchronous reset around DSP48 (only synchronous reset)
– Use signed values for most efficient, full-bit mapping
– Beware of bus sizing

 Can prevent synthesis from using the block fully while being logically correct
 Account for bit growth for pre-adder / M to P path

– Use pipelined (adder) chain instead of (adder) tree

Know What You Infer
1
- 1
0

>> UltraFast Design Methodology: Design Creation -
1-27

© Copyright 2019 Xilinx 119988

˃ High fanouts in critical paths
– Reduce loads to the portions of the design that do not require it
– Use register replication

 Increases the speed of critical paths by making copies of registers to reduce the fanout of a given signal

˃ Pipelining
– Restructure the long datapaths with several levels of logic and distribute them over multiple clock cycles
– Allows for a faster clock cycle and increased data throughput at the expense of latency and pipeline

overhead logic management
– Consider pipelining up front
– Balance latency
– Avoid unnecessary pipelining

Improving Performance
1
- 1
1

>> UltraFast Design Methodology: Design Creation -
1-28

© Copyright 2019 Xilinx 119988

137057**slide

˃ Gate clock or data paths
– Common technique to prevent switching/glitches from propagation
– The Vivado Design Suite gates logic for power, but some dependencies the tool does not know

˃ Maximize gating elements
– Gate entire clock domain

˃ Use clock enable pins of dedicated clock buffers
– Avoid LUTs or other methods to gate clock-signals

˃ Keep an eye on control sets
– Avoid fine-grained clock gating

˃ Use case block when priority encoder not needed
– Avoid large if-then-else constructs

Improving Power
1
- 1
2

>> UltraFast Design Methodology: Design Creation -
1-29

© Copyright 2019 Xilinx 119988

137058**slide

˃ 32k x 32-bit RAM with cascade_height
– Variations using cascade_height (all 32 BRAMs)

Performance/Power Trade-off for Block RAMs
1
- 1
3

>> UltraFast Design Methodology: Design Creation -
1-30

© Copyright 2019 Xilinx 119988

˃ Use the Vivado Report Power to estimate the power through all stages of a design
– The accuracy of the power estimates varies depending on the design stage when the power is estimated

˃ Use Report Power in either of the two supported modes to estimate power depending on accuracy required
– Vector-based power estimation is a more accurate estimate than vector-less mode

˃ Use accurate clock constraints and I/O constraints in your design to obtain accurate power analysis

Best Practices for Power Analysis
1
- 1
4

>> UltraFast Design Methodology: Design Creation -
1-31

© Copyright 2019 Xilinx 119988

˃ The Vivado Design Suite contains a set of methodology-related DRCs you can run using the
report_methodology Tcl command

˃ This command has rules for each of the following design stages
– Before synthesis in the elaborated RTL design to validate RTL constructs
– After synthesis to validate the netlist and constraints
– After implementation to validate constraints and timing-related concerns

˃ For maximum effect, run the methodology DRCs at each design stage and address any issues
prior to moving to the next stage

Using the UltraFast Design Methodology DRCs
1
- 1
5

>> UltraFast Design Methodology: Design Creation -
1-32

© Copyright 2019 Xilinx 119988

137065**slide

˃ The UltraFast Design Methodology report is automatically generated whenever a design that has
violations is opened after synthesis or implementation

Automated UltraFast Design Methodology Report
1
- 1
6

>> UltraFast Design Methodology: Design Creation -
1-33

© Copyright 2019 Xilinx 119988

˃ Pre-validated intellectual property (IP) cores significantly reduce design and validation efforts, and ensure a
large advantage in time-to-market

˃ Xilinx uses the industry standard IP-XACT format for delivery of IP, and provides tools (IP Packager) to
package custom IP

˃ The Vivado IP packager enables you to create custom IP for delivery in the Vivado IP catalog

˃ Before packaging your IP HDL, ensure its correctness by simulating and synthesizing to validate the design

˃ Ensure that the desired list of supported device families is defined properly while creating the custom IP
definition

– This is especially important if you want your IP to be used with multiple device families

˃ The IP catalog is a single location for Xilinx-supplied IP
– All Xilinx and third-party vendor IPs are categorized based on applications here

Working with IP: Packaging Custom IP
1
- 1
7

>> UltraFast Design Methodology: Design Creation -
1-34

© Copyright 2019 Xilinx 119988

˃ IP integrator is the interface for connecting IP cores to create domain specific subsystems and
designs

˃ IP subsystems are best configured using the IP integrator feature of the Vivado IDE
– Interactive block design capabilities of the IP integrator make the job of configuring and assembling

groups of IP easy

Creating IP Subsystems with IP Integrator
1
- 1
8

>> UltraFast Design Methodology: Design Creation -
1-35

© Copyright 2019 Xilinx 119988

˃ Manage sources in the Vivado Design Suite® with the revision control system
– HDL, IP XCI, IP BD, XDC, Tcl scripts, etc.
– Manage different source types in separate remote directories

˃ Two main revision control strategies
– Maximum flexibility

 Shorter runtime to rebuild the project
– Minimum number of files

 Least number of files to manage at the expense of flexibility

˃ Xilinx recommends following the maximum flexibility strategy
– A large number of files in revision control maximizes flexibility

Revision Control
1
- 1
9

>> UltraFast Design Methodology: Design Creation -
1-36

© Copyright 2019 Xilinx 119988

129180**slide

˃ Create and validate clocks
– check_timing: for missing clocks and I/O constraints
– report_clocks: check frequency and phase
– report_clock_networks: possible clock root

˃ Validate clock groups
– report_clock_interaction

˃ Validate I/O delays
– report_timing –from [input_port] –setup/-hold

– report_timing –to [output_port] –setup/-hold

˃ Add exceptions if necessary
– Validate using report_timing

Using Timing Reports
1
- 2
0

>> UltraFast Design Methodology: Design Creation -
1-37

© Copyright 2019 Xilinx 119988

˃ Timing Summary report provides high-level information on the timing characteristics of the design

˃ Use the Timing Summary report for sign-off post-implementation

˃ Use the Check Timing report to identify any missing timing constraints in the design

Understanding the Timing Reports
1
- 2
1

>> UltraFast Design Methodology: Design Creation -
1-38

© Copyright 2019 Xilinx 119988

˃ Design constraints define the requirements that must be met by the design in order for the design
to be functional in hardware

˃ Synthesis and implementation constraints

˃ Timing constraints
– Process of defining good timing constraints is broken into the four steps

 Defining clock constraints
 Constraining input and output ports
 Defining clock groups and CDC constraints
 Specifying timing exceptions

Working with Constraints
1
- 2
2

>> UltraFast Design Methodology: Design Creation -
1-39

© Copyright 2019 Xilinx 119988

˃ Goals
– Avoid higher implementation run times
– Adjust unrealistic timing requirements to help timing closure

˃ Start with fewer or no exceptions
– Meeting timing with fewer exceptions is OK
– Use clock group exceptions rather than point-to-point exceptions
– Avoid complex expressions with filters
– Avoid exceptions affecting too many paths

˃ Avoid these constraint types
– set_false path –through...

– set_max_delay –from [all_fanout –from ck1] –to [all_fanout -from ck2]

Timing Exceptions: Less is More!
1
- 2
3

>> UltraFast Design Methodology: Design Creation -
1-40

© Copyright 2019 Xilinx 119988

112321**slide

˃ Use the given RTL coding guidelines
– Use Vivado Design Suite HDL templates
– Control signals and control sets
– Resets
– Know what you infer
– Coding styles to improve performance
– Coding styles to improve power
– Running RTL DRCs

˃ The Vivado IP packager enables you to create custom IP for delivery in the Vivado IP catalog

˃ Timing reports help you determine why your design fails to meet its constraints

Summary
1
- 2
4

>> UltraFast Design Methodology: Design Creation -
1-41

© Copyright 2019 Xilinx 119988

137063**slide

l Introduction to the UltraScale Architecture

l UltraFast Design Methodology

l HDL Coding Techniques

After completing this module, you will be able to:
˃ Identify how the use of control signals (sets, resets, and clock enables) can impact your device

utilization

˃ Describe the benefits of following Xilinx recommendations on resets

˃ Describe the difference between the inference and instantiation

˃ Code for your design so that you can infer the dedicated hardware resources

˃ Describe the recommended coding techniques

Objectives
1
- 2

>> HDL Coding Techniques - 1-43 © Copyright 2019 Xilinx 118035

118037**slide

˃ Each flip-flop has three control signals
– CK – clock
– CE – clock enable (active High)
– SR – asynchronous/synchronous set/reset (active High)

 Either set or reset can be implemented (but not both)

˃ A grouping of control signals is a control set

˃ Designs with fewer control sets have more options and flexibility in terms of placement

Control Signals
1
- 3

>> HDL Coding Techniques - 1-44 © Copyright 2019 Xilinx 118035

˃ Clocks and asynchronous set/resets always gets connected to flip-flop control signals
– They cannot be moved to the datapath (to build equivalent logic with a LUT)

˃ Clock enables and synchronous set/resets
– Connected to flip-flop control signals when most of the flip-flops in a slice share the same control sets

(this is decided by the tools)
– Can be moved to the datapath (to a LUT input)

˃ Asynchronous sets/resets have priority access to the control signals over synchronous sets/resets
– For example, if a global asynchronous reset and a local reset are inferred on a single register

 The asynchronous reset gets the port on the register
 The synchronous reset gets mapped to a LUT input

Control Port Usage Rules
1
- 4

>> HDL Coding Techniques - 1-45 © Copyright 2019 Xilinx 118035

˃ Two kinds of resets are still supported—global and local
– Global: performed automatically after configuration has finished

 Performed by default and does not need to be coded into the design
 Access to this net is done with the global set/reset (GSR) port from the Startup component

▪ Access is only necessary if you want to perform a global reset a second time
▪ Note that if you are coding a global reset into your HDL, you are actually coding in a second reset

– Local: Internally generated targeted reset
 Used as a standard part of some components behavior (FSM, counters, etc.)

Resets
1
- 5

>> HDL Coding Techniques - 1-46 © Copyright 2019 Xilinx 118035

˃ Asynchronous resets
– Deassertion should be synchronous
– Otherwise creates problems such as metastability
– Use a reset bridge (use of two flip-flops back-to-back)

˃ Synchronous sets/resets make FPGA designs more reliable
– Do not need any special timing constraints
– Are often the most critical net in a design
– Are more predictable and stable
– Less susceptible to accidentally missing timing, runt pulses, or other phenomenon from upsetting logical

functionality
– Less prone to race conditions
– Note that the release of an asynchronous signal may not always have predictable timing results

Synchronous Versus Asynchronous Resets
1
- 6

>> HDL Coding Techniques - 1-47 © Copyright 2019 Xilinx 118035

118038**slide

˃ Using both a set and a reset will require additional logic
– Flip-flops cannot implement a set and a reset without additional LUTs

 This may or may not create an extra level of logic on the datapath
 Use of an asynchronous set and reset can affect timing and resource utilization and should be avoided

˃ For example
always @(posedge reset, posedge set, posedge clk)

if (reset)

a_reg
else if
a_reg

else
a_reg

<= 1'b0;
(set)
<= 1'b1;

<= A;

– This would require extra logic to generate a single asynchronous set or reset signal from two signals
– Instead use synchronous control signals

Avoid the Use of Both a Set and Reset on a Flip-Flop
1
- 7

>> HDL Coding Techniques - 1-48 © Copyright 2019 Xilinx 118035

˃ Coding mistakes and the random use of resources and control sets can lead to reduced utilization
and speed/performance of a device

˃ Xilinx recommends the following guidelines to ensure design efficiency
– Take advantage of hard blocks to map large register arrays
– Use as many of the dedicated resources as possible (SRLs, DSP slices, block RAMs)
– Turn off the Logic Replication synthesis option to reduce your design size
– Control the use of clock enables with HDL code

Resource-Aware Coding
1
- 8

>> HDL Coding Techniques - 1-49 © Copyright 2019 Xilinx 118035

˃ Faster than LUTs/flip-flops

˃ Consumes less power

˃ Timing of the dedicated blocks is already taken care of

˃ Offers as much as three times the performance

˃ DSP48E, FIFO, block RAM, ISERDES, etc.

˃ Xilinx recommends the use of dedicated resources

Dedicated Resources
1
- 9

>> HDL Coding Techniques - 1-50 © Copyright 2019 Xilinx 118035

˃ The key to Xilinx optimization is accessing and controlling device-level resources, as well as
overall place & route results

– From an HDL perspective, there are only two means to access any resource

˃ Inference
– Generic HDL code

 Synthesis tool decides which vendor
library to use

– Device optimization as per tool ability
– Maximum portability

˃ Instantiation
– Create "instance" of
– Designer references specific vendor

macro
– Maximum device optimization
– May be required
– Limits portability

Inference Versus Instantiation
1
- 1
0

>> HDL Coding Techniques - 1-51 © Copyright 2019 Xilinx 118035

129045**slide

˃ Components can be inferred in the design by synthesis
tool by providing their functionality

˃ Can be inferred by all synthesis tools
– Shift register LUT (SRLC32E)
– F7, F8, and F9 multiplexers
– Carry logic
– Multipliers and counters using the DSP block
– Global clock buffers (BUFG)
– SelectIO (single-ended) standard
– I/O registers (single data rate)
– Input DDR registers

˃ Can be inferred by some synthesis tools
– Memories
– Global clock buffers (BUFGCE, BUGFCTRL)
– Some complex DSP functions

˃ Cannot be inferred by any synthesis tools
– SelectIO (differential) standard
– Output DDR registers
– MMCM/PLL
– Local clock buffers (BUFIO, BUFR,

BUFG_LEAF)

Resources Inference
1
- 1
1

>> HDL Coding Techniques - 1-52 © Copyright 2019 Xilinx 118035

129046**slide

˃ Components can be instantiated in the design by using adding an instance in the HDL code

˃ Xilinx recommends that you instantiate the following elements
– Memory resources

 Block RAMs specifically (use the IP catalog)
– SelectIO technology standard resources
– Clocking resources

 MMCM, PLL (use the IP catalog)
 IBUFG, BUFGMUX, BUFGCE
 BUFIO, BUFR

Instantiation
1
- 1
2

>> HDL Coding Techniques - 1-53 © Copyright 2019 Xilinx 118035

˃ Xilinx recommends that designers regularly initialize their registers on any inferred flip-flop, SRL,
or RAM
signal reg: std_logic := '1';

...
process (clk) begin

if rising_edge(clk) then if (rst='1') then
reg <= '0'; else
reg <= val;

end if; end if;
end process;

˃ Benefits
– The initialization eliminates the need to specify a set condition for the sole purpose of simulation (creating

a logic one)
– This saves resources and allows the RTL to more accurately behave as the FPGA

Register Initialization
1
- 1
3

>> HDL Coding Techniques - 1-54 © Copyright 2019 Xilinx 118035

118047**slide

˃ Avoid coding for active low control signals

˃ Controlling the use of clock enables with HDL code will decrease the LUT use

˃ Avoid unnecessary use of sets and resets; if required, use the synchronous set/reset

˃ Avoid asynchronous resets on block RAMs, DSPs

˃ Limit the use of low fanout control signals

˃ Synthesis tools can move synchronous resets from control ports to the datapath

˃ Xilinx recommends not using the synthesis option to convert asynchronous resets to synchronous

Coding Techniques
1
- 1
4

>> HDL Coding Techniques - 1-55 © Copyright 2019 Xilinx 118035

118039**slide

˃ Minimize the use of control sets wherever possible

˃ Use the local or global resets wisely

˃ Use of both a set and reset control signal cannot be implemented on a flip-flop without the use of
extra logic on the datapath

˃ Xilinx recommends that designers regularly initialize their registers on any inferred flip-flop, SRL,
or RAM

˃ Use of the available dedicated resources offer three times performance

˃ The Vivado Design Suite should be used to manage control signal replication, rather than
designers manually replicating logic

Summary
1
- 1
5

>> HDL Coding Techniques - 1-56 © Copyright 2019 Xilinx 118035

118049**slide

