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Mission and Vision

¥ Provide intelligent compiler for Al-On-Chip
— Intelligent Al compiler for Deep Learning Accelerator (DLA)
— Intelligent Al compiler for Heterogeneous Computing

W Support architecture exploration across full design spectrum
— The next wave of innovation is happening at hardware-software Interface
— Offer novel approach in IP-EDA ecosystem to accelerate innovation and time-to-market
— Optimize the Al performance for off-the-shelf SoCs, FPGAs and custom silicon

¥ In-depth compiler technical experience

— Based on open source compiler, ONNC (Open Neural Network Compiler), connecting
ONNX ( Open Neural Network Exchange) to Al-On-Chip

— More ONNC information is available on website (https://onnc.ai/) and GitHub -
(https://github.com/ONNC/onnc)
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https://github.com/ONNC/onnc

ONNX Model for Interfacing with Edge Inference Device

O PyTorch

‘.\:‘ Chainer

+Q+’ Caffe2

M Cognitive
‘7 Toolkit

dmlc

XGBoost

4 Confidential

L1111

CPU

L X TTTTT

GPU

Qi:

44 PaddlePaddle

https://azure.microsoft.com/en-in/blog/onnx-runtime-for-
inferencing-machine-learning-models-now-in-preview/

Irrel

rrei

jASIC



https://azure.microsoft.com/en-in/blog/onnx-runtime-for-inferencing-machine-learning-models-now-in-preview/

ONNX - Open Neural Network Exchange Format

® ONNX is a open format to represent deep learning models

— Al developers can more easily move models between state-of-the-art tools and choose
the combination that is best for them

— ONNX models are currently supported in Caffe2, Microsoft Cognitive Toolkit, MXNet, and
PyTorch, and there are connectors for many other common frameworks and libraries.

— ONNX is developed and supported by a community of partners
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https://onnx.ai/

ONNC - Open Neural Network Compiler

B ONNC (Open Neural Network Compiler)

— Collection of compiler and Al toolchains targeted on ONNX-based DLA
— ONNC transforms ONNX models into executables for DLA
— First open source in July 2018, the latest was released in March 2019

1 oas
Scaffez Sg» Chainer &1 $ognitive Pl O PyTorch 4 PaddlePaddle
2

https://onnc.ai/#getting-started
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Compiler Designed for Heterogeneous Architecture
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ONNC Compiler Architecture

- -

B ONNC software stacks illustrates the functional s

blocks from importing an ONNX computation graph | ONNX Parser
model to emitting corresponding hardware binaries QNI B o
B ONNC paves another fast track for proprietary DLAsS TensorSel | TensorSel
to execute ONNX models by defining ONNC IR, an
iIntermediate representation (IR) that has one-to-one (fensorSched ]; ¢ | | ((MensorSched |: 2 | |
mapping to the ONNX IR [ Mematos i & || [ Mematoe |i 3 || &
B Two other popular compilation frameworks in deep [ Lowerng ' % || [Toosemt )i 3 || 3
learning systems, TVM and Glow, built their '
software stacks on top of the LLVM backend CPULLVM |
W The intermediate representations of LLVM have a oL —
finer granularity than ONNC IRs while mapping to Machine {MawmeJ
= =

hardware operators
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ONNC Compiler Advantages

ONNC IR and Extension

— The ONNC IR has defined a set of common operators among which 116 IRs respectively
correspond to 116 ONNX operators

— To create new ONNC IRs, users may refer to the ONNC IR Extension Guide

Pass Manager

— ONNC'’s pass manager supports automatic scheduling based on the dependency defined
by the pass designer

— If a pass fails to achieve an optimization goal, it can opt to return a retry request and then
pass manager will re-schedule the retry pass as well as all its dependent passes

Vanilla Backend

— ONNC provides a Vanilla backend as a template to ease the development of a new DLA
backend. New IRs or new passes might be required in porting to a new target
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ONNC Optimization Flows

W There are two kinds of optimization
algorithms for neural network

— Graph-level optimization Liveness Analysis
— Vector-level optimization

W Graph-level optimization handles with
matrices Memory Allocation

Layer Scheduling

— Separate a matrix into pieces
— Merge several matrices into big one
— Set the order of matrix multiplications

W Vector-level optimization handles with
vectors Dead Code Elimination

— Reorder the cross products of vectors

SW Decomposition

Loop Optimization
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Layer Splitting - Handle the memory limit
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Liveness Analysis of Tensors

® Find out the live range of every tensor
W Leverage use-define chain of ONNX

® By the help of simple liveness analysis, we can reuse local memory and eliminate ¥2 memory
consumption with greedy allocation

W1 W2 W3 W4

W1 = X1()
W2 = X2()

W3 = X3()

W4 = S(W1, W2, W3)
Y(W4)
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Layer Scheduling

m If size W2 > W1 > W3, then we can reorder X1 X2 X3 to reduce the memory consumption

W1 w2 W3 W4 W1 W2 W3 W4
T T S— W3 = X3()
P R W1 = X1()
X2 W2 = X2()
3 Y " X3 I """"""" ™ | wa=sw1, w2, wa)
S e e I Y(W4)
Y &Y &
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Memory Allocation

® Memory allocation is use to allocate memory for each layer
® Layer Scheduling affects the results of memory allocation

address

W1 W2 W3 W4 e
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w4

~ time
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Layer Fusion

B Weight stationary and output stationary architectures usually have dedicated element-wise
function unit.

m If we can leverage the element-wise function unit, then we can save data movement from
outside to the inside core

° Xeon

weightFIFO

Matrix®
operator

-
1T
Element-wisel
operator
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Near-optimal results: ONNC Best-Fit with Heuristic and Reordering
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Domain-Specific Hardware & Software Co-Design

ASIC Full Design and Implementation Cycle >
SoC Architecture IP Selection SoC Software SoC System Silicon
Design & RTL Design Integration Development Verification Tape-Out
RTL Simulation and Verification > ASIC Backend Implementation >

Virtual Prototyping >
HW & SW Co-Design > FPGA Prototyping >

) Supported by EDA vendors- Hybrid Hardware Emulation
and Open Source Community
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SoC Architecture and FPGA Prototyping System

i Xilinx Zv::;l:l ';/IPISOIC)S NVDLA on PL or
rocessor Module (PS) FPGA Extension Board
Z2CU102/2CU104/z2CU106
Xilinx FMC

| Connectors

| Xilinx Zynqg

é MPSoC

| Cortex-A53 AXI Bus

Mali-400

Pin Mux / Demux

AXI Bus Fabric
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NVDLA ONNC-Based Software Framework

Runtime Environment

ONNC-based Compiler Tools

Scaffez %o Chainer &5 So9nitive  mBREYl O PyTorch 44 paddiePaddle

ONNX m
Model Options User ML Application Software
ONNC

ONNX Parser NVDLA UMD Driver

Graph Optimizer & Task Dispatcher
NVDLA KMD Driver

CPU Diagnostic NVDLA
Backend Tools Backend

Linux Loadable reader
Loadable analyzer
Loadable Transaction recorder
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NVDLA Virtual Platform and ONNC SDK

® NVDLA virtual platform is built to support various hardware design tradeoffs
W Explore the hardware/software co-design and optimize at the system level

- - ~ e ~
Compiler Virtual Platform
Model Options . Guest - ’ i P
- N et seea | mm || mscv
' Kernel}f; — UMD/KMD UMD/KMD
ONNC ___‘_\_\ A
Pt |
e , | Select | |~ ARM
Backend P e | e | Y
k J : __________ : EI' ‘.E E:- ||||||||||| 'I:
Diagno;ﬁc Toolsfy, | 1 | |____5 i g _____ et e e s .
| | I [
Loadable |, | NVDLA | select | SystemC | | 2™ | | nvDlAC
Analyzer |  Model | <4¢mmm.| Model Latency | | podel
Loadable i | : . Model | |
fommm s : S S —
Human- N\ 4
Readable :
form Regme:r
L Transaction
Trace
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Computing Bonds vs. Memory Bonds

Alexnet, 256 MAC, 128kB C-buffer

DRAM BW u i

Lat

atency (ms) 1GB/s | 2GB/s  4GB/s 8GB/s | 10GB/s Alexnet (~0.73 GOP, 61M M'MEIghtS)
100MHz,| 758 | 472 | 329 257 | 243 * Huge fully connected weights
200MHz| 659 379 236 164 15.0 . :

sizfd 400MHz| 634 | 335 190 118 | 104 DRAM spe.ed dominates
B00MHz| 618 | 317 167 95 | & * Computation power cannot help
1000MHz 615 31.4 16.3 8.0 76

GoogleNet, 256 MAC, 128kB C-buffer

Latency (ms) DRAM BW GoogleNet (~3.2 GOP, 7M weights)
1GB/s | 2GB/s  4GB/s  8GB/s | 10GB/s . Il fil .
100MHz| 4338 | 4268 | 4243 4231 | 4228 Small filter size (1x1)
Core 200MHz| 2317 21.68 | 21.34 | 2122 21.19 . Benefit para”e”sm in CNN Operations
Speed |400MHz| 1462 | 1150  10.84 1067 | 1065 i .
B00MHz| 124 | 731 570 642 | 637 * Computation power dominates
000MHZ 12.16 6.79 I 486 | 439 4,34 « DRAM Speed cannot help
ResNet50, 256 MAC, 128kB C-buff .
— o NEW ResNet50 (~7.8 GOP, 25M weights)
Latency (ms) 1GB/s | 2GB/s | 4GB/s  8GB/s [ 10GBIs * Large CNN operations, large weights
00MHz | 1932 | 1531 | 137.6 1321 | 1319 . : :
] Wz | 1435 | 966 | 768 f_e"a.s | er7 Residual =2 directl_y add two data cubes =2
s;:d MHz | 1298 | 718 | 483 383 | 367 DRAM speed dominates
MHz | 1268 | 649 | 359 | 242 | 221 + Computation power and DRAM speed are
000MHZ 1262 | 643 @ 343 | 216 | 192

evenly important
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Open Al Toolchain for Edge Inference

¥ Propose Open Al Toolchain for edge inference

— Based on open-source compiler framework
* ONNC (Open Neural Network Compiler)

— Support ONNX-based DLA (Deep Learning

Accelerator) @ O N N X

* CNN (NVDLA, ...), RNN, CIM, ..., etc.
— Support NN models from various frameworks g
 Native support or through converters O rJrJ CJ

m Target Users
— Al chip makers, silicon users, FPGA users

— SoC architect, academic research et
— Model developer for edge inference device

- ] °at
S caffez Sg» Chainer LT, So9nitive Pl O PyTorch 4 PaddlePaddle
L2

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

-
vvvvvvvvvvvvvvvvvvvvv
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Open Al Toolchain Software Framework

F TensorFlow tf2onnx > _ { Converters O PyTorch © Caffe2

KeraS Or Native @Xne E\ﬂkNroso-fi-K

ONNX reader

optimizing
middle-end

Graph Optimizer

Task Dispatcher

optimizing
backend

Bundle / Interpreter

0 2 ) T T
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Calibration tool for NVDLA

FP32 weight >500 images

® NVDLA hardware provides precision-

preservation architecture € ONNX  JPEG
= ONNC Calibrator profiles distributions of weight -_ _

parameters, input tensors and activations and or [NC cuantiztion

create calibration table (CTable) to adjust each

Iayer. INTS weight CTable

[

B ONNC Calibrator does some basic <> ONNX @

optimizations and produces a new ONNX model e A

with INT8 weights

® ONNC compiler reads new ONNX model and
CTable to produce quantized loadable file

ONNC —

GreenSocg &

Emulator
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ONNC on GitHub - Getting Started

GitHub, Inc. [US] | https://github.com/ONNC/onnc

Supported platforms € hitps//github.com

ONNC supports Ubuntu/x86_64 and MacOSX. onnc

Here is a list of verified versions: Open Neural Network Compiler

¢ Ubuntu/x86_64 @c++ w197 ¥37 s BSD-3-Clause  Updated 3 days ago

o 16.04
* MacOSX
onnc-umbrella
© High Sierra umbrella project helps you to build up onnc from scratch

Getting Started Shell & %13 &fs BSD-3-Clause Updated 14 days ago

There are three ways to build ONNC:

1. Build ONNC via Docker
Please refer to the ONNC Utilities document.

2. Build ONNC via ONNC umbrella
Please follow the instructions of README.md in onnc-umbrella.
Here is the version of external library we are using in ONNC.

3. Build ONNC without ONNC umbrella
Please refer to the ONNC Automake build instruction or ONNC CMake build instruction
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ONNC on GitHub - Build ONNC with Docker Image

GitHub, Inc. [US] | https://github.com/ONNC/onnc/blob/master/docs/ONNC-Utilities.md
4. Build ONNC with the Docker Image

Although the Docker image include a source code tree, it might not be the latest release version of ONNC. We strongly
suggest you clone the latest version of ONNC from the GitHub repository, mount the source code directory to the Docker
image, and modify the source code with your favorite editor on your host machine. You may clone the source code from
the GitHub ONNC repository (https://github.com/ONNC/onnc). To download large model files when cloning the ONNC
source, you have to install Git LFS (https://github.com/git-Ifs/git-Ifs/wiki/Installation) first.

% mkdir -p <source_dir> && cd <source_dir>
$ git clone https://github.com/ONNC/onnc.git

Once the latest source code is ready, you may invoke the following command to enter ONNC build environment:

$ docker run -ti --rm --cap-add=SYS_PTRACE -v <source_dir>/onnc:/onnc/onnc cnnc/onnc-community

<source_dir> is the directory where you cloned the latest ONNC source code and the -ti option provides a interactive
interface for the container, the -v option mounts the directory to the Docker image, the --cap-add=sys_PTRACE option
enables debug support (e.g. gdb) in the container. You can make some change to the source code ( <source_dir>/onnc )
and run the following command to build ONNC.

// run in the container cli, under build directory " /onnc/onnc-umbrella/build-normal’ by default
$ smake -3j8 install
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ONNC on GitHub - Running ONNX Models

GitHub, Inc. [US] | https://github.com/ONNC/onnc/blob/master/docs/ONNC-Utilities.md

Running a Single Benchmark

You may run a single model for benchmarking using the following shell command:

// run in the container cli
$ onni <model_file_path>/model.onnx <input_file_path>/input_0.pb -verbose=<level>

where <model_file_path> is the path to the model file for the pre-trained ONNX model and <input_file_path> is the
path to the corresponding input file. In the ONNC Docker container, the model file path is /models/<model_name> and the
input file path is /models/<model_name>/test_data_set_<@~6> . <level> indicates different levels of verbose information.
Higher-level information is a superset of all lower-level information. For example, level 4 will include all information from
level 1 to level 4.

Information for each verbose level:

e Level 1: Inference time & memory usage
¢ Level 2: ONNX operator statistics
e Level 3: Inference time & ONNX operator statistics per layer

¢ Level 4: Memory allocation log

Here is an example of running AlexNet and printing out all information.

// run in the container cli
27 Con $ onni /models/bvlc_alexnet/model.onnx /models/bvlc_alexnet/test_data_set_©/input_@.pb -verbose=4
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